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Foreword

The Climate Futures for Tasmania research project is Tasmania’s most important source of climate 
change information tailored specifically for the local climate and conditions of Tasmania. In a first 
for Australia, and possibly the southern hemisphere, Climate Futures for Tasmania generated local 
climate information at a scale and level of detail not previously available. The project continues to 
be invaluable in informing evidence-based decision making in all sectors of government, industry, 
business and communities in Tasmania. 

This collaborative research project, led by Professor Nathan Bindoff, has demonstrated innovative 
leadership by involving and engaging external stakeholders on all levels. From the beginning of the 
project, interested end-users were invited to provide input and direction. This has meant that the 
results and outcomes from the science are directly useable in business systems, applied models and 
decision-making processes. 

The report has passed the rigours of an external scientific review process and I appreciate the efforts 
of the respected scientists who gave their time and expertise to review the research outcomes. Thank 
you to Professor William Gutowski (Iowa State University), Professor Bruce Hewitson (University of 
Cape Town) and Dr James Risbey (CSIRO-CAWCR).

The Climate Futures for Tasmania research project is partly funded through the Commonwealth 
Environment Research Facilities (CERF) program. Over the last four years, the CERF program has 
facilitated strong ongoing collaborations across Australia’s research institutions and world-class, 
public good biodiversity research. 

On behalf of the Department of Sustainability, Environment, Water, Population and Communities,  
I thank all those who have contributed to this successful and valuable project. 

Alex Rankin
First Assistant Secretary
Information Management Division
Department of Sustainability, Environment, Water, Population and Communities
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Climate Futures for Tasmania is the most complete regional climate change study undertaken in Australia.

Climate Futures for Tasmania is a unique, jointly funded, collaborative research project that generated improved 
climate change information for Tasmania. In a first for Australia, and the southern hemisphere, Climate Futures for 
Tasmania generated ensemble climate simulations of future climate with direct applications to the impacts on water 
and catchments, agriculture and climate extremes for local communities, for businesses and decision making in 
Tasmania.

Climate Futures for Tasmania generated the most detailed simulations of Tasmania’s future climate. 

Climate Futures for Tasmania used a dynamical downscaling method to generate climate projections over Tasmania 
at a finer scale than ever before. We have simulated the complex processes that influence Tasmania’s weather and 
climate, thus providing a detailed view of Tasmania’s possible future climates. The dynamical downscaling used in 
this project is an established technique that uses inputs from global climate models to generate fine-resolution 
climate simulations.

Climate Futures for Tasmania used several global climate models to provide a range of likely 21st century 
climates. 

We have used six global climate models of the kind that were reported in the IPCC Fourth Assessment Report. 
By using an ensemble of global climate models we have increased confidence in our projections (where the 
simulations agree) and can use the differences in the simulations to estimate the range of future climates. Two 
emissions scenarios were chosen, a high and a low scenario, bracketing plausible future climate change without 
mitigation policies. 

The new climate modelling shows a high level skill in simulating the current temperature and rainfall 
distributions over Tasmania. 

The simulations contain more than 140 individual climate variables recorded every six hours, and provide estimates 
of the Tasmanian climate for both the recent past (1961‑2007) and the future (2010‑2100). The downscaled models 
have a high level of skill in reproducing the recent climate of Tasmania for temperature and rainfall. For the period 
1961‑1990, the model-mean statewide daily maximum temperature is within 0.1 °C of the Bureau of Meteorology 
observed value of 10.4 °C; the annual total rainfall of 1385 mm is very close to the observed value of 1390 mm. 
The pattern of mean temperature over Tasmania for the recent past has a spatial correlation of 0.93 with gridded 
observations. For mean rainfall, the spatial correlation is 0.63. Spatial correlations for rainfall for some models 
across all seasons exceeds 0.80. Successful validation of climate models gives confidence in projections of future 
temperature and rainfall. 

Climate models inform us of the long‑term trends and statistics of the climate. They are not predictions of 
the weather for a particular day, month or year.

Climate simulations are not weather forecasts, and cannot tell us what will happen on any given day, month, or year.  
Climate simulations project long-term changes to climate. That is, the modelled daily variables (or even weekly, 
monthly or annual) do not match between the simulations and observations. The simulations are intended to give 
an indication of projected climate over decadal time scales. It is the long‑term trends that inform us of the likely 
changes.

Executive Summary



Climate Futures for Tasmania generated a 
comprehensive dataset, more than twice the 
size of that used to inform the IPCC’s Fourth 
Assessment Report.

There are 17 simulations of the climate of Tasmania 
at a resolution of 0.1‑degree (about 10 km) or better. 
These simulations were all downscaled from global 
climate models of the kind used in the IPCC Fourth 
Assessment Report. The quantity of modelling 
output was in excess of 75 terabytes of data and 
took approximately 1200 days of continuous 
computer time on a 0.82 teraflop machine. This 
is more than twice the climate modelling output 
considered by the IPCC in compiling their Fourth 
Assessment Report.

Bias‑adjusted simulations were created for use 
in biophysical and hydrological models.

Climate Futures for Tasmania produced 
bias‑adjusted simulations designed specifically to 
be used with biophysical and hydrological models. 
Bias‑adjusted simulations were calculated for each 
downscaled simulation using gridded observations 
from the Australian Water Availability Project 
(AWAP). The bias‑adjustment process was applied 
to five variables and the bias‑adjusted simulations 
contain 11 commonly used climate variables. These 
simulations were used directly in biophysical and 
hydrological models.

Climate Futures for Tasmania produced 
datasets that are relevant and usable for 
Tasmanian businesses and communities.

Climate Futures for Tasmania was strongly end‑user 
driven, with the information needs of community, 
industry and government central in the research 
analyses. This technical report deals specifically 
with the climate modelling program undertaken, 
and an assessment of the simulations against 
current climate. The general climate impacts report 
investigated the general climate trends evident 
in the simulations, along with further analysis 
of the present climate (against observations) 
and, importantly, how the climate of Tasmania 
is projected to change in the 21st century. The 
remaining reports assess specific aspects of the 
future climate, notably impacts to agriculture, 
extreme events, and water and catchments.
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FREQUENTLY USED ACRONYMS 

Australian Water Availability Project	 AWAP 
Conformal Cubic Atmospheric Model	 CCAM
Intergovernmental Panel on Climate Change	 IPCC
IPCC Fourth Assessment Report	 AR4
Global Climate Model	 GCM
Intergovernmental Panel on Climate Change	 IPCC
National Centers for Environmental Prediction	 NCEP
Special Report on Emissions Scenarios	 SRES
Sea Surface Temperature	 SST

ABBREVIATIONS USED FOR GLOBAL CLIMATE MODELS 

CSIRO (Australia) GCM		  CSIRO-Mk3.5
Max Planck Institute (Germany) GCM	 ECHAM5/MPI-OM
Geophysical Fluid Dynamics Laboratory (USA) GCM	 GFDL-CM2.0
Geophysical Fluid Dynamics Laboratory (USA) GCM	 GFDL-CM2.1
University of Tokyo (Japan) GCM		  MIROC3.2(medres)
The Met Office (UK) GCM	 UKMO-HadCM3



climate modelling  •  7

table of contents

Table of Contents

Foreword........................................................................................................................................3

Executive Summary.......................................................................................................................4

1 Introduction................................................................................................................................8

2 Background...............................................................................................................................12
2.1 Choice of IPCC SRES emissions scenarios................................................................................................. 12
2.2 Choice of coupled global climate models................................................................................................. 14

3 Methods used in climate projections......................................................................................16
3.1 Introduction to CCAM................................................................................................................................. 17

3.2 Downscaling process.................................................................................................................................. 19

3.3 Boundary conditions and forcing in the downscaling process.............................................................. 20

3.4 Bias‑adjustment of sea surface temperatures......................................................................................... 21

3.5 Post‑processing of modelling output........................................................................................................ 22

4 Modelling program..................................................................................................................24
4.1 Phase 1......................................................................................................................................................... 24
4.2 Phase 2......................................................................................................................................................... 24

4.2.1 Evaluation against downscaled NCEP reanalysis...........................................................................................24
4.2.2 Testing the spectral nudging of water vapour: the A2s simulation.............................................................25
4.2.3 Three member ensemble to assess intra‑model variability..........................................................................26
4.2.4 Demonstrating the effects of higher resolution: the 0.05‑degree simulation..........................................26

4.3 The AWAP data as a gridded observational dataset............................................................................... 27

5 Skill of the simulations at modelling Tasmanian climate......................................................28
5.1 Temperature................................................................................................................................................ 29
5.2 Precipitation................................................................................................................................................ 37
5.3 Solar Radiation............................................................................................................................................ 40
5.4 Potential evaporation................................................................................................................................. 41
5.5 Pressure ....................................................................................................................................................... 42
5.6 Downscaling................................................................................................................................................ 48

5.6.1 Temperature.............................................................................................................................................................49
5.6.2 Rainfall.......................................................................................................................................................................50
5.6.3 Pressure .....................................................................................................................................50

5.7 Ensemble simulations................................................................................................................................. 54
5.8 High resolution (0.05‑degree) simulation................................................................................................ 58

6 Bias-adjustment........................................................................................................................60
6.1 Bias‑adjustment method........................................................................................................................... 62
6.2 Bias‑adjustment sample results................................................................................................................ 67

7 Synthesis...................................................................................................................................76

References....................................................................................................................................78



climate modelling  •  8

Evidence for the warming of the climate system is 
now unequivocal (IPCC 2007). There is an increasing 
body of evidence that most of the observed increase 
in global average temperatures since the mid‑20th 
century is very likely due to the observed increase 
in anthropogenic greenhouse gas concentrations 
(IPCC 2007). This observed warming is consistent 
with our knowledge of the physical climate system 
(the atmosphere, oceans, land and sea ice) and 
with projections of the earth’s climate over the 21st 
century (Meehl et al 2007a). The entire climate system 
is affected by this warming, including changes to 
rainfall, wind, evaporation and the hydrological cycle.

Climate change is a global phenomenon whose 
impacts will be most keenly felt at a local level. The 
projected effects of global climate change are not 
evenly distributed over the globe (see Figure 1.1). It is 
because of this spatial variation that local or regional 
studies are required to understand the local effects of 
climate change.

Tasmania is unique in its global perspective with 
regard to climate change. It lies on the border 
between a region where most global climate models 
show a drying trend and a region that will undergo a 
wetting trend (Meehl et al 2007b). These factors make 
Tasmania a difficult region to project climate change 
for variables like precipitation using just global 
climate models. Tasmania is an Australian state in 
the south‑east of the continent. It consists of a main 
island (up to 300 km across) and a number of smaller 
islands. Tasmania’s topography is highly variable 
causing a varied climate on island scales, ranging 
from an annual rainfall of more than 3000 mm on the 
mountainous west coast, to about 500 mm on the 
drier east coast.

Dynamical downscaling of global climate models is a 
way of incorporating Tasmania’s complex topography 
and maritime influenced climate to provide a greater 
realism of regional variations in key climate variables 
such as rainfall, winds and temperature. However, the 
models are not perfect; they do not simulate every 
aspect of the climate system. Downscaled climate 
models can reproduce many aspects of the patterns 
of variability and weather systems that describe the 
overall climate and as such, they are our best, and 
often the only, tool for assessing potential changes in 
the future climate (Randall et al 2007).

For Tasmania, regional dynamical downscaling of 
global climate models was first undertaken in a 
joint project involving the Tasmanian Partnership 

for Advanced Computing and CSIRO Marine and 
Atmospheric Research, commissioned by Hydro 
Tasmania (McIntosh  et  al  2005). The initial project 
used CSIRO’s Conformal Cubic Atmospheric Model 
(CCAM) to create local‑scale projections, tuned to the 
complexities of the Tasmanian climate.

This initial study identified a range of limitations. 
Using a single scenario of future emissions did 
not provide any insight into the potential range, 
or uncertainty estimates of the possible future 
climates. It used a relatively short projection period 
(to 2040) and provided only a single projection for 
one greenhouse gas emissions scenario. The initial 
study provided a better understanding of what is a 
reasonable time period to assess climate change, the 
potential problems that occur when downscaling 
a global climate model, the potential value of the 
downscaling approach, and the availability and 
accuracy of observed data. Valuable lessons were 
learned on how to manage a multi‑disciplinary 
research project. The recommendations for future 
climate modelling included longer simulations into 
the future, updated and improved models, multiple 
IPCC emissions scenarios and an ensemble of models 
to refine the projections and give a more complete 
assessment of likely climate futures in Tasmania 
(McIntosh et al 2005). All of these recommendations 
were incorporated into the Climate Futures for 
Tasmania project.

1 Introduction
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The pilot study also identified the value of a prior 
understanding of the climate change information 
needs of end‑users. Extensive consultation with 
diverse potential end‑users confirmed widespread 
demand for climate change research and, more 
importantly, identified many specific outputs from 
the research that would be useful to each end‑user 
group. 

Climate Futures for Tasmania built on the 2004 pilot 
study by expanding the IPCC emissions scenarios to 
two (a high (A2) and a low (B1) emissions scenario), 
increasing the number of GCMs used to six, 
extending the time period of simulations to 2100, 
using ensembles in the analyses and significantly 
expanding the involvement of end‑users.

This collaborative research project is unique in its 
involvement of state and federal governments, 
universities, research organisations and Tasmanian 
stakeholders. In a first for Australia, Climate Futures 
for Tasmania generated local climate information at a 
scale and level of detail not previously available. 

The climate modelling program described in this 
report is one of the five areas, or components, of 
research undertaken in the project. The remaining 
areas of research are general climate impacts, water 
and catchments, impacts on agriculture and extreme 
events. This report focuses on the performance of 
the simulations in reproducing Tasmanian climate 
and assesses the likelihood that they can accurately 
project future climate change for the Tasmanian 
region. The results of the other areas of research are 
in separate technical reports (Bennett  et  al  2010; 
Grose et al 2010; Holz et al 2010; White et al 2010). 

About the project

Climate Futures for Tasmania is the Tasmanian Government’s 
most important source of climate change data at a local 
scale. It is a key part of Tasmania’s climate change strategy 
as stated in the Tasmanian Framework for Action on 
Climate Change and is supported by the Commonwealth 
Environment Research Facilities as a significant project.

The project used a group of global climate models to 
simulate the Tasmanian climate. The project is unique in 
Australia: it was designed from conception to understand 
and integrate the impacts of climate change on Tasmania’s 
weather, water catchments, agriculture and climate 
extremes, including aspects of sea level, floods and wind 
damage. In addition, through complementary research 
projects supported by the project, new assessments were 
made of the impacts of climate change on coastal erosion, 
biosecurity and energy production, and the development 
of tools to deliver climate change information to 
infrastructure asset managers and local government.

As a consequence of this wide scope, Climate Futures for 
Tasmania is an interdisciplinary and multi-institutional 
collaboration of twelve core participating partners (both 
state and national organisations). The project was driven 
by the information requirements of end users and local 
communities. 

The Climate Futures for Tasmania project complements 
climate analysis and projections done at the continental 
scale for the Fourth Assessment Report from the 
Intergovernmental Panel on Climate Change, at the 
national scale in the Climate Change in Australia Report and 
data tool, as well as work done in the south-east Australia 
region in the South Eastern Australia Climate Initiative. The 
work also complements projections done specifically 
on water availability and irrigation in Tasmania by the 
Tasmania Sustainable Yields Project.
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Figure 1.1	 Model mean of projected change in global surface temperature from the early and late 21st 
century, relative to the period 1980‑1999 (from IPCC 2007). The central and right panels 
(b) show the multi‑model mean projections for the 23 GCMs reported in the IPCC AR4 for 
the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios. The left panels (a) show the 
corresponding spread in the models used to create the mean picture.
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(Nakicenovic & Swart (eds) 2000). The SRES emissions 
scenarios were used in the IPCC Third Assessment 
Report in 2001 (IPCC 2001) and in the IPCC Fourth 
Assessment Report (AR4) in 2007 (IPCC 2007). The 
SRES emissions scenarios are divided into six families: 
A1FI, A2, A1B, B2, A1T and B1. The families are based 
on future technological and societal changes, such as 
population growth, and not just on a ‘high, medium 
and low’ scale of carbon emissions. Figure 2.1 shows 
carbon dioxide emissions levels for these six families  
from the year 2000 projected to the year 2100, as 
well as the range of likely emissions scenarios (post 
SRES). Note that the six families do not follow the 
same profile over the coming century, with some 
showing a constant increase and others levelling and 
decreasing by 2100.

The IPCC recommends that more than one of the 
SRES emissions scenario families be used in any 
analysis. As such, we chose to downscale GCM 
modelling output from two climate scenarios, one 
categorised as a high (A2) and one categorised as a 
low (B1) emissions pathway. By considering differing 
emissions scenarios, we have an indication of the 
range of possible climate change. 

2 Background

Coupled Ocean‑Atmosphere General Climate Models 
(GCMs) provide the best estimates of change to our 
climate on a global scale to the end of this century. 
The Intergovernmental Panel on Climate Change’s 
(IPCC) Fourth Assessment Report (2007) used climate 
modelling output from 23 different GCMs as the 
basis of their global assessment of climate change 
(Meehl  et  al  2007b). Because GCMs are global in 
scale, with a limited resolution, they cannot provide 
a detailed picture of climate variables at regional 
scales. Tasmania’s diverse geography and varied 
climate make assessing the regional impacts of 
climate change on temperature, rain and other 
climate variables in Tasmania particularly difficult 
when relying solely on low resolution GCMs.

The foundation of Climate Futures for Tasmania 
was to take the simulations produced by six global 
climate models, using two IPCC SRES emissions 
scenarios, and use these projections as inputs into 
a high‑resolution climate model that is focused on 
Tasmania. By modelling the atmosphere and local 
environment at a much finer scale than is possible 
using a standard GCM, we expected to better 
simulate the specific processes that drive Tasmania’s 
weather and climate. The Climate Futures for 
Tasmania downscaled simulations add value to the 
global‑scale information provided in the IPCC Fourth 
Assessment Report, and are tied to the accuracy of 
the global projections made by the host GCMs. The 
aim was to produce projections of climate change for 
the Tasmanian region that were sufficiently detailed 
to allow the resolution of changes in the projected 
climate at finer temporal and spatial scales across 
Tasmania.

2.1 Choice of IPCC SRES emissions 
scenarios

Given that it is very likely that rising greenhouse 
gases and aerosols are responsible for recent global 
warming (IPCC 2007), it follows that the extent of 
climate change is dependent on the amount of future 
greenhouse gas emissions. Therefore, the choice 
of a gas emissions scenario to use in the climate 
simulations is of utmost importance. The most 
commonly used and accepted set of greenhouse gas 
emissions scenarios, known as the SRES emissions 
scenarios, comes from the IPCC. These were first 
presented in a 1992 IPCC Second Assessment Report 
(IPCC 1996) and were termed the IS92 emissions 
scenarios (Leggett  et  al  1992). The emissions 
scenarios were then updated in 2001, reported in 
the Special Report on Emissions Scenarios (SRES). 
They are now named the SRES emissions scenarios 

IPCC Emissions Scenarios
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Figure 2.1	 Global greenhouse gas emissions 
scenarios for the 21st century. 
Greenhouse gases include carbon 
dioxide, but also other gases such as 
methane and nitrous oxides. Also shown 
is the updated likely range of greenhouse 
gas emissions presented in the Fourth 
Assessment Report (post‑SRES) (from 
IPCC, 2007).
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Since 2001, the observed global greenhouse gas 
emissions have been tracking above A1FI, the highest 
SRES emissions scenario. This may suggest that a 
higher emissions scenario such as A1FI would be 
the most realistic choice for the study, at least in the 
short-term, but this emissions scenario was rejected 
for two main reasons. The A1FI emissions scenario, 
the most fossil fuel intensive scenario, starts with 
high levels of carbon dioxide emissions, but involves 
a rapid change in technology around the middle of 
this century. In contrast, the A2 emissions scenario 
features less rapid technological change, and a more 
heterogeneous world, with emissions that outstrip 
the A1FI emissions scenario by the end of the century. 
Second, and more importantly for this project, the 
IPCC AR4 did not feature any GCM simulations for the 
A1FI emissions scenario. Instead, likely changes under 
the A1FI emissions scenario in temperature and sea 
level rise variables were scaled up from results under a 
lower emissions scenario (A1B). This scaling approach 
disqualifies the A1FI emissions scenario from being 
used in the project, as unscaled GCM modelling 
outputs are required for our downscaling method.

For a low emissions future, we chose the B1 emissions 
scenario. The B1 family of emissions scenarios 
describes a world with a focus on rapid changes in 
economic structures towards a service and information 
economy, and the introduction of new technology. 
The B1 emissions scenario assumes coordinated 
global effort on economic, social and environmental 
sustainability, but no additional climate initiatives, 
such as mitigation of carbon dioxide emissions.

Choosing the A2 and B1 emissions scenarios covers 
the range of plausible emissions scenarios for 
unmitigated climate change and thus provides a 
good range of climate change projections. It is worth 
noting that the change in global mean near‑surface 
temperature is roughly the same across all emissions 
scenarios until the mid‑21st century, and so the 
choice of SRES emissions scenario does not become 
important until the latter half of the century. More 
details on the changes produced by these emissions 
scenarios can be seen in Figure 10.4 and Figure 10.5 
of Meehl  et  al  (2007b). We will show in the General 
Climate Impacts Technical Report (Grose  et  al  2010) 
that the intra‑scenario variability, produced by 
multiple models, each with slightly different internal 
mechanisms, is at least as great as the inter‑scenario 
variability. This leads us to believe that diversity of 
GCMs (discussed in Section 2.2) is of more importance 
than the spread of emissions scenarios, and so we 
have chosen to concentrate on more models and 
only two emissions scenarios.
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2.2 Choice of coupled global climate 
models

The IPCC considered 23 GCMs when compiling 
its Fourth Assessment Report (AR4). The output 
from these GCMs (along with two more that were 
submitted after AR4 was written) are all publically 
available through the World Climate Research 
Programme’s Coupled Model Intercomparison 
Project Phase 3 (CMIP3) (Meehl  et  al  2007a)  
(www‑pcmdi.llnl.gov/ipcc/about_ipcc.php). The use 
of an ensemble of GCMs by the IPCC allowed for a 
more robust estimate of the climate change signature 
by examining the ensemble mean of key variables 
(such as temperature and rainfall), as well as an 
estimate of the uncertainty in these climate variables 
through the spread of the models. Climate Futures 
for Tasmania has employed the same multi‑model 
approach. 

Due to the relatively modest scale of the project 
compared to the IPCC AR4, we have chosen to use six 
of the 25 GCMs available from the CMIP3 archive to 
produce fine‑scale climate projections over Tasmania. 
There are many ways to decide on the “best” six GCMS 
to use. The ability to reproduce hemispheric‑scale 
modes of the atmosphere (such as El Niño, the 
Antarctic Oscillation et cetera) and sensitivities to 
climate change, are all important. The decision on 
the best models to use is also tied to the specific 
use of the results generated and this choice can be 
an entire study in itself. We have decided to base our 
choice of models on the work of Smith and Chandler 
(2009) who argue that some models can be shown 
to perform relatively poorly when assessed by their 
ability to simulate present day means and variability. 
The ability to accurately simulate present climate is 
a necessary, but not wholly sufficient, condition for 
a good projection of climate change. In particular, 

regional projections of rainfall are characterised by a 
high level of uncertainty. Smith and Chandler argue 
that discounting models that have been shown to 
perform poorly over south‑east Australia can reduce 
uncertainty in model projections. 

The eight criteria, in order of importance, that Smith 
and Chandler developed to assess the performance of 
GCMs in reproducing present‑day climate variability 
in the Australian region are in Table 2.1. They then 
assessed each of the 23 GCMs reported in the IPCC 
AR4 against these criteria and determined that 
only five models (ECHAM5/MPI‑OM, GFDL‑CM2.0, 
GFDL‑CM2.1, MIROC3.2(hires) and UKMO‑HadCM3) 
were able to provide good spatial distribution of 
Australian rainfall and credible representations of 
ENSO. These five models became the basis of our 
choice of models for the downscaling project. Note that 
GFDL‑CM2.0 and GFDL‑CM2.1 can be considered as 
independent GCMs. These two models have different 
dynamical cores, ocean time‑stepping scheme 
and lateral viscosity. The final model chosen was 
CSIRO‑Mk3.5. CSIRO‑Mk3.5 has been developed since 
the release of the IPCC Fourth Assessment Report and 
has since been included in the CMIP3 archive. Mk3.5 
is an updated version of CSIRO‑Mk3.0. CSIRO‑Mk3.0 
was ranked in the top half of the 23 GCMs considered 
by Smith and Chandler. The relative improvement of 
CSIRO‑Mk3.5 over CSIRO‑Mk3.0 has been discussed in 
a number of papers. Gordon et al (2010) showed that 
CSIRO‑Mk3.5 performed better than CSIRO‑Mk3.0 in 
a number of metrics, such as improved replication 
of the El Niño Southern Oscillation (ENSO). 
Watterson (2008) ranked the CSIRO‑Mk3.5 GCM 
slightly higher than CSIRO‑Mk3.0 GCM on model 
skill, and gave CSIRO‑Mk3.5 a similar skill score 
to the UKMO‑HadCM3 and MIROC3.2(medres) 
GCMs. Finally, Rotstayn  et  al  (2010) compared the 
performance of CSIRO‑Mk3.0, CSIRO‑Mk3.5 and 

Table 2.1	 The eight tests used to assess the performance of the 23 IPCC models in their ability to 
reproduce present day climate in the Australian region (Smith & Chandler 2009).

Test Citation

1 Number of rainfall criteria failed (Smith & Chandler 2009)

2 Satisfied ENSO criteria (Min et al 2005; 
van Oldenborgh et al 2005)

3 Satisfied criteria for rainfall, temperature and MSLP (Suppiah et al 2007)

4 M‑statistic representing goodness of fit at simulating 
rainfall, temperature and MSLP over Australia (Watterson 2008)

5 Satisfied criteria for daily rainfall over Australia (Perkins & Pitman 2009)

6 Satisfied criteria for daily rainfall over MDB region (Maximo et al 2008)

7 Satisfied criteria for MSLP over MDB region (Charles et al 2007)

8 Below median errors for 14 variables (Reichler & Kim 2008)
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(the recently developed) CSIRO‑Mk3.6 and showed 
that CSIRO‑Mk3.5 was significantly improved over a 
number of metrics compared to CSIRO‑Mk3.0. 

Finally, CSIRO is a major partner in the project and 
thus the use of CSIRO‑Mk3.5 as one of the models was 
desirable (CSIRO‑Mk3.6 had not been developed at 
the start the project). None of the six models chosen 
has a mean global warming at the extreme ends of 
the range of warmings projected by the simulations 
reported by the IPCC for either of the emissions 
scenarios.

Another practical consideration when choosing 
the six GCMs, was to ensure that each of the 
selected models simulated by the IPCC for the 
chosen emissions scenarios was available, since the 
downscaling technique requires input from GCM 
simulations. Smith and Chandler (2009) assessed the 
MIROC3.2(hires) model as one of the most suitable 
models for use in this study. However, modelling 
output did not exist for the primary emissions 
scenario chosen for use in the project (A2) and thus 
was excluded from our study. MIROC3.2(medres) was 
subsequently chosen as it performs well in all tests 
except for the number of rainfall criteria it failed (Smith 
& Chandler 2009). Smith & Chiew (2009), using a 
combined measure, ranked MIROC3.2(medres) as the 
fifth best GCM for generating inputs to hydrological 
models across south‑east Australia. The fact that it is 
the same model as MIROC3.2(hires) with the same 
implementation of the physics, but at a different 
resolution, was also considered to be advantageous. 
The final list of six GCMs chosen for the project is in 
Table 2.2.

By concentrating our efforts on these six models, we 
limited the size of the computational task associated 
with downscaling, while also understanding the 
inter‑model difference and uncertainty.

Global Climate Model Country of origin Approximate horizontal 
resolution (km)

CSIRO‑Mk3.5 Australia 200

GFDL‑CM2.0 USA 300

GFDL‑CM2.1 USA 300

ECHAM5/MPI‑OM Germany 200

MIROC3.2(medres) Japan 300

UKMO‑HadCM3 United Kingdom 300

Table 2.2	 The six global climate models chosen for use in Climate Futures for Tasmania, along with 
their country of origin and approximate horizontal resolution over Australia.

A detailed report on the performance and climate 
sensitivity of each of the chosen GCMs is not 
included in this report. Five of the six models (the 
exception is CSIRO‑Mk3.5) are described in detail 
and assessed in Chapter 8 (Randall  et  al  2007) and 
Chapter 10 (Meehl  et  al  2007b) of the IPCC Fourth 
Assessment Report (along with 17 other GCMs). 
CSIRO‑Mk3.5 is described by Gordon et al (2010). The 
performance of four of the six GCMs in the Tasmanian 
context has been partly assessed in the Tasmanian 
Sustainable Yields: Production of climate scenarios 
technical report (CSIRO 2009). The Climate Futures for 
Tasmania: general climate impacts technical report 
(Grose et al 2010) assesses the trends of the chosen 
GCMs in the context of the model mean reported by 
the IPCC in Chapter 10. 

The six GCMs used in the project have been chosen 
because of their ability to model current south‑east 
Australian climate means and variability. Aside from 
this crucial metric, the six GCMs span a broad range 
of the metrics used to assess GCM performance and 
climate sensitivity considered in the above reports. 
Finally, it should be noted that the simulations 
archived by CMIP3 (and thus reported by the IPCC) 
represent only a subset of the possible future climate 
scenarios. As such, the results presented in this report 
necessarily under‑represent the full envelope of 
future climates.

The decision to use six GCMs and the metrics 
employed for choosing these six models is an area of 
study that could benefit from future work. The exact 
effect on the ensemble spread for the current climate 
and the climate response of choosing these six GCMs 
has not been fully investigated. Such an investigation 
was beyond the scope of the current project but 
would form an interesting aspect of future work 
in the area of dynamical downscaling of GCMs for 
climate change studies.
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This section outlines the method used to downscale 
from global climate models (GCMs) with a resolution 
of 200 km to 300 km to the fine‑scale 0.1‑degree 
(about 10 km) simulations.

Two established methods exist for downscaling 
climate information from the coarse spatial scales 
of GCMs to a finer scale suitable for regional studies: 
dynamical and statistical downscaling. Dynamical 
downscaling feeds output from a host GCM into 
either a limited‑area model or a stretched grid global 
climate model. The result is a fine‑scale dynamical 
model over the area of interest, often called a regional 
climate model. Regional climate models are based on 
the same physics as GCMs, and can be just as complex. 
However, because a regional climate model focuses 
on a small area, it can provide more detail over that 
area than is possible with a GCM alone. Statistical 
downscaling assumes that local climate is conditioned 
by large‑scale climate along with local features such 
as topography, distance to coast and vegetation. By 
assuming these relationships, statistical downscaling 
identifies empirical links between large‑scale patterns 
of climate elements and local climate, in order to 
arrive at fine‑scale projections of climate based on 
coarse GCM simulations.

Several studies have compared the results 
from statistical and dynamical downscaling 
(Cubasch  et  al  1996). The general conclusion from 
these studies is that the two downscaling methods 
perform similarly for present‑day climate. However, 
the two methods frequently differ when examining 
future climate projections. 

One of the limitations of statistical downscaling is the 
assumption that observed links between large‑scale 
climate variables (from the GCM) and local climate 
will persist in a changed climate regime. A second 
limitation, when using this method to project a 
changing climate, is that the observational dataset 
being used for the downscaling must span the range 
of projected future climate responses. In practice, 
this necessitates having available a long, reliable 
observational series of both the large and fine‑scale 
climate. Finally, it is difficult to resolve changes in 
timing and frequency (seasonality) of weather events 
using statistical downscaling. Some more complex 
methods of statistical downscaling do allow for 
changes in seasonality of events but most statistical 
approaches do not.

The main constraints of dynamical downscaling 
include the technical complexity and computational 
cost involved in generating the projections of current 

and future climate. Just as important is demonstrating 
that the model can simulate the current climate and 
atmospheric processes. Successfully reproducing the 
current climate indicates that the downscaled model 
is correctly simulating the processes that influence 
and control the Tasmanian climate and weather. 
Reproducing the current climate gives confidence 
that the downscaling model will be able to simulate 
the future (changed) climate. However, the future 
climate may be strongly influenced by processes 
that are not as significant in the current climate (for 
example, increased amount of convective rainfall in 
the atmosphere).

The use of dynamical downscaling allows us 
to demonstrate changes in the local climate of 
Tasmania, such as changes to seasonality, changes 
to the frequency and intensity of weather events 
and the relationships between different climate 
variables. Dynamical downscaling also maintains the 
relationships between different climate variables (for 
example, rainy days are also cloudy, or when a cold 
front passes over Tasmania the temperature drops). 
Because of these capabilities of downscaling, Climate 
Futures for Tasmania made the technical and financial 
commitment to undertake an extensive dynamical 
downscaling process involving multiple GCMs and 
SRES emissions scenarios, as detailed in the following 
sections of the report. This commitment has led 
to the provision of the most detailed projections 

3 Methods used in climate projections

Conformal Cubic Grid

Figure 3.1	 An example of a conformal cubic grid 
projected on to a sphere.



section • 3

of Tasmania’s future climate. Significantly for this 
project, dynamical downscaling not only accounts 
for the dynamical relationship between local features 
(such as orography) and synoptic patterns in the 
present climate, but also allows these relationships to 
evolve into the future. 

3.1 Introduction to CCAM

CSIRO Marine and Atmospheric Research has been 
undertaking regional climate modelling for well over 
a decade. For much of this time, the Conformal Cubic 
Atmospheric Model (CCAM) has been the mainstay 
of the dynamical downscaling undertaken at CSIRO 
(McGregor 2005; McGregor & Dix 2001; McGregor & 
Dix 2008). CCAM is a full atmospheric global climate 
model, based on using a conformal‑cubic grid, 
(Figure  3.1). To allow for downscaling experiments, 
CCAM can be configured to use a stretched grid 
by utilising the Schmidt transformation (Schmidt 
1977) of the coordinates and dynamical equations. 
A stretched grid allows for higher resolution in areas 
of interest (see Figure  3.2) and lower resolution 
elsewhere.

Figure 3.2	 The CCAM grid projected on to the Earth. The grid has been stretched to provide higher 
resolution (approximately 60 km grid cells) over Australia. This is the grid used in the first 
step of the downscaling process.

CCAM Grid Projected on Earth

CCAM uses a semi‑Lagrangian advection scheme 
and semi‑implicit time step with an extensive 
set of physical parameterisations: the GFDL 
parameterisation for long‑wave and short‑wave 
radiation (Lacis &  Hansen 1974; Schwarzkopf & Fels 
1991) is used, with interactive cloud distributions 
determined by the liquid and ice‑water scheme of 
Rotstayn (1997); the model uses a stability‑dependent 
boundary layer scheme based on Monin‑Obukhov 
similarity theory (McGregor  et  al  1993); the canopy 
scheme described by Kowalczyk  et  al  (1994) is 
employed with six layers for soil temperature, six 
for soil moisture and three layers for snow; and the 
cumulus convection scheme with both downdrafts 
and detrainment, as well mass‑flux closure, as 
described by McGregor (2003). A current limitation of 
CCAM is that it uses fixed vegetation and soil type. 
Changes in distribution of vegetation and soil can 
be important for local changes, and future versions 
of CCAM are planned that will allow these fields to 
evolve in response to climate change.

climate modelling  •  17
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CCAM’s predecessor, DARLAM, took part in many 
regional and stretched‑grid inter‑comparisons 
with models from other climate institutions 
including COMPARE 1 (short‑term regional 
modelling of cyclogenesis  over Canada) and 
COMPARE 2 (modelling flow over the Pyrenees, 
(Georgelin et al 2000)) as well as the PIRCS regional 
climate modelling inter‑comparison over the USA 
(Anderson et al 2003; Takle et al 1999). 

The physical parameterisations of DARLAM, and 
to a lesser extent its numerics, were carried over 
into CCAM. Numerous improvements have since 
been implemented in CCAM. International CCAM 
inter‑comparisons include COMPARE 3 (tropical 
cyclone genesis (Nagata et al 2001; Nagata et al 2000)) 
and the two RMIP regional climate model 
inter‑comparisons over Asia for one and ten years 
(Fu et al 2005), as well as SGMIP, an inter‑comparison of 
the four existing stretched grid global climate models 
(Fox‑Rabinovitz et al 2006; Fox‑Rabinovitz  et al 2008). 
In all the inter‑comparisons, both models performed 
as well, or better than, the other downscaling models.

Other investigators for regional climate studies 
have also used DARLAM and CCAM over other parts 
of the world. DARLAM has been used to generate 
simulations over South Africa (Joubert  et  al  1999) 
and New Zealand (Renwick  et  al  1999). Simulations 
using CCAM have also been successfully undertaken 
over South Africa (Engelbrecht  et  al  2009), Fiji 
(Lal et al 2008) and Indonesia.

Figure 3.3
A flat representation of the CCAM 
grid with 48 by 48 (C48) cells on 
each face, stretched to an average 
of 10 km per grid cell over Tasmania. 
Tasmania appears largely as one 
would expect, but the surrounding 
areas are increasingly distorted 
and compressed the further 
they lie from the high‑resolution 
centre panel. The “back” face of 
the conformal cubic grid, which 
contains most of the world, is not 
shown in this picture.

CCAM Grid Centred on Tasmania

The exact choice of downscaling method affected the 
detail of the results generated in this report. Using a 
different dynamical downscaling model, such as WRF 
(the Weather and Research Forecast Model), or using 
statistical downscaling, may impact the fine detail of 
the results, such as the spatial correlation between the 
modelling output for temperature and the observed 
value, but the broad picture will be consistent across 
different methodologies. An important element of 
this difference is how the model resolves topography 
within each cell. The differences that come with 
improved topography will be discussed in Section 
5.8. The exact nature, or size, of these differences is 
beyond the scope of this study. Any downscaling 
method that does not model the current climate 
accurately should be rejected. A further discussion 
on the differences that can arise from using different 
downscaling methods can be seen in the ENSEMBLES 
Final Report (van der Linden & Mitchell (eds) 2009).

Even when choosing between dynamical downscaling 
models differences can arise. A major driver of these 
differences is the exact boundary conditions required 
for different downscaling models. As CCAM is a 
stretched grid global model it does not require lateral 
boundary conditions and thus can be forced using 
only SST from the host GCM. A limited area model 
such as WRF must use atmospheric variables from 
the host GCM in order to provide the lateral boundary 
conditions necessary in such a model. This issue will 
be explored further in Section 3.4.



section • 3

climate modelling  •  19

Figure 3.4	 Schematic of the dynamical downscaling process used in Climate Futures for Tasmania, from 
the low resolution coupled GCM boundary conditions (Sea Surface Temperatures) through 
the intermediate resolution (0.5‑degree) to the high resolution CCAM 0.1‑degree grid.

Climate Futures for Tasmania Modelling Program

3.2 Downscaling process

A basic principle of weather forecasting is that 
processes at even the finest of scales can influence 
large‑scale weather (the butterfly flapping its wings 
in Australia causing a hurricane in South America is 
a popularisation of this principle). The implications 
of this principle on climate modelling is that the 
finer the resolution of a model, the more capable 
that model is of simulating the small scale processes 
that influence weather. As one increases resolution, 
one more realistically simulates the surface forcings, 
especially orographic effects. In addition, as with 
weather prediction, in general the model will more 
realistically capture the dynamics (and hopefully 
physics) of weather systems.

Unfortunately, increasing model resolution is 
expensive; doubling the resolution typically equates 
to an eightfold increase in computation and storage 
requirements. Appropriate parameterisation schemes 
can also go a long way to negating the effects of 
limited resolution. Furthermore, when choosing an 
appropriate model resolution, some thought must 
be given to the intended purpose of the simulation: 
GCMs are broad‑scale models, but give a perfectly 
acceptable indication of the changes to climate on a 
continental scale. In contrast, if one wants to model 
wind hazards at the household scale, then a model 
with far greater detail is required, perhaps with a 
spatial resolution approximating the size of the 
households.

6 GCMs (Sea surface temperatures as input)

Stage 1
0.5º grid ~ 60 km

Stage 2
0.1º grid ~ 10 km 

Bias-adjust
SSTs

(Reynolds 
Climatology)

2-stage 
downscaling 

process

60 km to 10 km
SSTs + atmospheric nudging

6 downscaled-GCMs with 2 IPCC Emissions Scenarios 
providing 12 simulations covering 1961-2100

Overlap Period: 1961-2007					     Projections: 2010-2100

Re-grid from 
CCAM grid to 
limited area 
regular grid
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Tasmania is roughly 350 km by 300 km, the size of 
a few of GCM grid cells. After carefully weighing up 
the costs and benefits involved with downscaling 
to different grid‑scales, a decision was reached to 
achieve a final resolution of 0.1‑degree for Tasmania, 
corresponding to a grid where each individual cell 
has side lengths of approximately 10 km. CCAM uses 
a stretched grid with continuously varying resolution; 
by centring the high‑resolution panel over Tasmania 
and choosing a grid with 48 by 48 cells on each face, 
we were able to achieve an average resolution over 
Tasmania of approximately 10 km for the fine‑scale 
simulations. Figure  3.3 shows how 10 km CCAM 
views Tasmania and surroundings (that is the rest 
of the world). Note that the further points lie from 
the high‑resolution panel the more they become 
compressed in this image.

The downscaling process undertaken in the project 
is outlined in Figure 3.4. The process starts with input 
from a coarse resolution GCM simulation (hereafter 
referred to as the host GCM) into one of the chosen 
SRES emissions scenarios.

Previous studies using CCAM have shown that the 
downscaling process can produce less accurate 
advection of synoptic systems if the ratio of grid size 
between the parent and downscaled model is too large 
(see for example Denis et al 2002; Denis et al 2003). 
The GCMs in Section 1 all have a resolution between 
200  km and 300 km and thus in order to achieve 
a final resolution of 10 km, it was desirable to 
undertake a two‑step downscaling process, using 
an intermediate resolution model to ensure modest 
ratios between the host and downscaled simulations. 
We chose an intermediate model configuration of 
CCAM that has 64 by 64 (C64) cells on the primary 
face and covers the Australian continent. This gave 
an average resolution of 60 km on the primary face. 
Figure 2.2 shows the stretching of the grid from the 
60 km primary face out to the North Atlantic, where 
the resolution degrades to around 400 km. Even at 
this coarse resolution, the model is still fine enough 
to simulate the broad features of the climate system 
and so will not degrade the performance of the 
simulation over Australia.

3.3 Boundary conditions and forcing in 
the downscaling process

Nested, limited-area regional models require 
boundary conditions for both the bottom and the 
sides of the domain. As CCAM is a global, stretched 
grid model it can be configured to only require bottom 
boundary conditions from the host GCM. The C64 (60 
km) intermediate model takes interpolated monthly 
sea surface temperature (SST) and ice‑cover from the 
host GCM as the bottom boundary condition. It does 
not use any forcing of the atmospheric fields between 
the GCM and CCAM, and so is said to be operating 
in unforced mode. CCAM does however, use the 

same radiative forcing and atmospheric composition 
as the host GCM. Katzfey  et  al  (2009) have shown 
that atmospheric forcing of fields from the GCM 
into CCAM is not needed, and in fact may degrade 
the performance of the model, especially when a 
bias‑correction is applied to the SSTs (this will be 
discussed in the next subsection). Further, this paper 
shows that just the bottom boundary conditions are 
sufficient to produce a downscaled model of the host 
GCM that reflects the climatic changes seen in the 
host model. This point is explored further in Section 5, 
and in the General Climate Impacts Technical Report 
(Grose et al 2010).

The C48 (10 km) model is forced using output from 
the corresponding intermediate C64 model. Like 
the C64 model, the C48 model uses the SST from 
the host GCM (that has come, via interpolation, 
from the intermediate C64 model) as a bottom 
boundary condition, and the radiative forcing and 
atmospheric composition used in both the host GCM 
and the intermediate C64 model. However, unlike the 
intermediate C64 model the atmosphere of the C48 
model is forced using several model variables from 
the C64 model.

Fine resolution models add value to GCMs by taking 
into account the influence of local orography, land 
use and fine‑scale climate. However, regional models 
such as the 10 km configuration of CCAM also need to 
account for the influence of atmospheric conditions 
outside their region of focus, that is outside the 
primary panel of the grid. For this reason, nudging 
techniques are essential to ensure the relevant 
large‑scale atmospheric phenomena from the 
intermediate C64 model are assimilated into the 
fine‑scale C48 model.

Two options are available in CCAM atmospheric 
forcing of the pressure and velocity fields: far‑field 
forcing or spectral nudging. Far‑field forcing forces 
the far‑field atmosphere of the fine‑scale model 
using the atmosphere of the intermediate model. 
We define the far‑field as the back panel and half of 
each side panel. Spectral nudging applies a spectral 
filter that ensures the broad features (of a length 
scale similar to the high‑resolution panel or longer) 
of the intermediate model are passed through to the 
fine‑scale model.

We performed short simulations using both far‑field 
forcing and spectral nudging (results not shown) and 
chose to implement spectral nudging (also known 
as a scale‑selective filter) (Thatcher & McGregor 
2009) in our configuration of the C48 model. 
Preliminary experiments with the 10 km model prior 
to starting the main simulations showed that the 
low resolution of the far‑field (the area away from 
Tasmania) of the C48 model precluded resolution 
of realistic features such as cyclones and fronts, and 
thus this configuration of the model was unable to 
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develop large‑scale atmospheric phenomena that 
are a feature of a real atmosphere. Spectral nudging, 
where forcing is used at larger scales but smaller 
scales are allowed to develop independently, ensures 
that these large‑scale features in the C64 model are 
passed into the fine‑scale C48 configuration.

For the C48 model simulations, we implemented a 
scale‑selective filter to spectrally nudge the surface 
pressure, wind fields, temperature and atmospheric 
moisture above 850 hPa. Thatcher and McGregor 
(2009) have shown that nudging surface pressure, 
temperature and winds resulted in consistent 
improvements in pattern correlation and root-mean 
squared (RMS) errors, both at the surface and at the 
500 hPa level. That is, it is beneficial for reproducing 
patterns of the host model above the specified length 
scale.

Other variables are not nudged (forced) but are free 
to evolve within the model; however the model 
will attempt to maintain dynamical balance so all 
variables will be affected by this nudging process.

Spectral nudging replaces the lateral boundaries 
that effectively exist in far‑field forcing, with a cutoff 
in the spectral domain at a specific length‑scale. 
This allows the model to evolve freely at small 
length‑scales, with the regional atmosphere at large 
length scales specified by the intermediate model. 
Typically, spectral nudging is significantly more 
computationally expensive than far‑field forcing (O(N2 
log2N), where O = the order of magnitude and N = the 
number of grid points) for N2 grid points as compared 
with O(N)). Thatcher and McGregor (2009) have 
shown that a one dimensional scale‑selective filter 
can be used effectively in CCAM when downscaling 
for a regional area and at significant computational 
savings.

3.4 Bias‑adjustment of sea surface 
temperatures

Analysis of the GCMs reported in Chapter 8 of the 
IPCC AR4 (Randall  et  al  2007) show that they tend 
to have biases in the sea surface temperatures (SST) 
generated relative to the observed climate (Reynolds 
1988). Katzfey et al (2009) have shown that correcting 
the SSTs for this bias, rather than using the raw SSTs 
from the GCMs, produces more realistic precipitation 
in the C64 (60 km) simulations. To achieve this, 
monthly average GCM SSTs for 40 years (1961‑2000) 
were averaged to produce one mean for January, 
one for February and all other months over the entire 
period. The differences between these values and the 
calculated monthly Reynolds’ SST (Reynolds 1988) 
values over the same period were then determined, 
and these differences (the bias for each month) were 
subtracted from the GCM SSTs for the corresponding 
month, for each year over the length of the 
simulation, where SSTs were available (1961‑2100). 

The corrected SST values were then input for the C64 
downscaled simulations. Note that there is no need 
for a similar bias‑adjustment to be applied to the SSTs 
generated by the C64 simulations before they are put 
into the C48 simulations. This technique preserves 
the decadal and intra‑annual variability of the host 
GCM, but ensures that the monthly climatology of 
the SSTs in the downscaled model is the same as the 
observed Reynolds’ dataset (Reynolds 1988). Because 
the bias‑adjustment is determined, by comparison 
of the observed and simulated SSTs and this cannot 
be computed for future climates, the monthly biases 
are assumed invariant over time. As a consequence, 
the bias of the GCM SSTs is unaltered in the C64 
downscaled model in the simulation to 2100.

In this study, the choice was made not to attempt 
atmospheric forcing, or adjustment, of other 
atmospheric fields generated in the GCMs such 
as surface pressure, wind fields, temperature and 
moisture fields, since they are influenced by the 
unadjusted SSTs and there is no technical approach 
to make the forcing consistent with the bias‑adjusted 
SSTs.

Katzfey  et  al  (2009) have shown that using 
bias‑adjusted SSTs with no atmospheric forcing 
produces a better current climatology of rainfall than 
unadjusted SSTs with atmospheric forcing. We also 
use the raw sea‑ice distribution directly from the host 
GCM. This can lead to an inconsistency as the SST is 
adjusted, but not the sea‑ice boundary. However, as 
CCAM is an atmosphere only model there was no easy 
way of correcting the sea‑ice boundary in line with 
the bias‑adjusted SST. This issue was investigated 
prior to starting the climate modelling program and 
the inconsistencies that arose do not appear to affect 
the simulations in the region of interest. It should 
also be noted that there are often large temperature 
gradients at the sea‑ice boundary even without 
bias‑adjustment of SST, and that the adjustments did 
not noticeably change these gradients. It is believed 
that these findings also hold true for the climate 
change signal, and thus we have chosen to force the 
60 km model only with the bias‑corrected SSTs and 
the raw sea-ice distribution from the host GCM.

The ability to adjust the SSTs from the host GCMs 
before using them as input into the downscaled C64 
model is a significant advantage of using a stretched 
grid global model over a limited area regional model. 
As stated above, this adjustment allows us to better 
simulate the current climate, while preserving the 
climate change signature from the host GCM. Limited 
area models require lateral boundary conditions and 
thus must use atmospheric variables from the host 
GCM. As such it is difficult, if not impossible, to adjust 
the SST while maintaining consistency between the 
atmospheric and sea-surface forcing.
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3.5 Post‑processing of modelling output

Although both the C64 and C48 configurations 
of CCAM are global atmospheric models, only the 
modelling output from the region of interest was 
post‑processed to a number of limited‑area regular 
grids for ease of access (Figure 3.5). The post‑processed 
modelling output is available for download from 
the data portal of the Tasmanian Partnership for 
Advanced Computing (TPAC). For more specialised 
uses, the raw modelling output has been stored 
and can be accessed by directly contacting TPAC  
at www.tpac.org.au.

The C48 model is processed to a regular 0.1‑degree 
grid that covers Tasmania and the Bass Strait islands 
(Figure  3.5a). The processed area covers the region 
between 143.5 degrees east to 149 degrees east and 
44 degrees south to 39 degrees south. It has only one 
vertical level and contains all the variables that exist 
in the C48 configuration of the model, with a six‑hour 
time step.

The C64 model is post‑processed to two grids, each 
containing different variables. The first, and major 

Figure 3.5	 The geographic extent of the three 
grids: (a) the processed 0.1‑degree 
grid for the C48 (10 km) model 
(b) the 0.5‑degree grid for the 
“standard” processing of the C64 
(60 km) model and (c) the extended 
0.5‑degree grid for the pressure 
levels output from the C64 model.
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The Three Output Domains

output product, is a 0.5‑degree grid covering the 
region from 125 degrees east to 170 degrees east and 
50 degrees south to 25 degrees south (Figure 3.5b). 
It has only one vertical level, the bottom level of the 
model, along with all the surface variables that exist 
in the model (more than 140). Modelling output is 
written at least once every six hours (with several 
variables, such as temperature and rainfall written 
out every three hours). 

The second product from the C64 model is a pressure 
level product. The modelling output is regridded to 
regular 0.5‑degree cells, ranging from 100 degrees 
east to 180 degrees east and 65 degrees south to 5 
degrees south (Figure  3.5c). This product has three 
vertical levels, at 1000 hPa, 850 hPa and 500 hPa and 
a six‑hour time step. At each level, we have included 
the temperature, geopotential height, meridional 
and zonal wind, as well as the mean sea level pressure 
(MSLP), surface temperature and 10 m wind speed. 
This product is designed to allow us to study the 
large‑scale pressure fields over the Australian region, 
both now and into the future, and to examine how 
they affect Tasmanian weather and climate.

(a)

(b)

(c)
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4.2 Phase 2

The second phase of the climate modelling program 
(Table  4.2) comprised a number of simulations that 
complemented or added to the modelling from 
the Phase 1. We also corrected any errors that had 
been identified during the first phase. Each of the 
simulations carried out during Phase 2 is discussed 
separately below.

4.2.1 Evaluation against downscaled NCEP 
reanalysis

The NCEP/NCAR Reanalysis 1 is a project undertaken 
by NOAA/NCEP (National Oceanic and Atmospheric 
Administration/National Centers for Environmental 
Prediction) in the US, to produce global analyses of 
atmospheric fields such as pressure, temperature, 
winds and humidity, through the data assimilation 
of a range of quality‑controlled observations 
(Kalnay  et  al  1996). The reanalysis is not an 
observational dataset, it is a model that is strongly 
forced by available observations, and thus will be 
similar to observations where they occur. Nonetheless 
it has its own errors and biases. The NCEP Reanalysis 
does not have the capacity to project future climate, 
but functions as an observational dataset that can 
be used to assess both the behaviour of downscaled 
GCM simulations and the downscaling process 
itself. The NCEP Reanalysis data was provided by the 
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from 
www.esrl.noaa.gov/psd/.

The Climate Futures for Tasmania climate modelling 
program has created a unique and valuable dataset 
that provides daily modelling output for more than 
140 climate variables for more than 720 grid cells 
over Tasmania and the Bass Strait islands. In line with 
the approach taken by the IPCC, we have undertaken 
an approach using an ensemble of models and SRES 
emissions scenarios. The ensemble approach allows 
for greater confidence in the projections through 
the use of the ensemble mean, as well as giving an 
indication of the uncertainty through the spread of the 
models. Using the spread across the simulations as a 
measure of confidence in the projections is especially 
valuable when the modelling output is used as input 
to, for example, biophysical or hydrological models.

4.1 Phase 1

The majority of the climate modelling program was 
undertaken in the first phase. This phase (shown 
in Table  4.1) involved carrying out the two‑stage 
downscaling process for each of the six global climate 
models (GCM) across the two chosen SRES emissions 
scenarios; a total of 24 simulations. 

For Phase 1, the downscaling process from GCM 
through the 0.5‑degree model to the 0.1‑degree 
model was identical for each of the 12 downscaling 
simulations. Accordingly, the only difference between 
the six 0.1‑degree model simulations for each SRES 
emissions scenario was caused by the host GCM 
(through the sea surface temperature (SST) as the 
bottom boundary conditions). 

4 Modelling program

SRES Emissions Scenarios

GCM A2 A2 B1 B1

0.5° 0.1° 0.5° 0.1°

CSIRO–Mk3.5 ü ü ü ü

GFDL–CM2.0 ü ü ü ü

GFDL‑CM2.1 ü ü ü ü

MIROC3.2(medres) ü ü ü ü

UKMO‑HadCM3 ü ü ü ü

ECHAM5/MPI‑OM ü ü ü ü

Table 4.1	 Summary of Phase 1 of the climate modelling program, detailing the 24 simulations 
undertaken in this stage.
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The NCEP Reanalysis is a global model with an output 
resolution of 2.5-degrees (approximately 250 km over 
Australia). This is similar in resolution to the six GCMs 
we chose for downscaling, and allows us to treat the 
NCEP Reanalysis as another (the seventh) host GCM. 
For our project, we have performed our downscaling 
process on NCEP Reanalysis 1 from 01/01/1961 to 
31/12/2006.

Changes in large‑scale pressure fields, such as 
movement of the subtropical ridge, are expected 
to play a key role in future changes to the climate 
(Grose  et  al  2010). The motivation behind a 
downscaled NCEP Reanalysis simulation was to 
establish confidence in the ability of the downscaled 
simulations to reproduce these large‑scale patterns 
in the current climate. Like all other downscaling 
simulations for the project, we force the 0.5‑degree 
CCAM model with the sea surface temperatures 
(SST) from the host (the NCEP Reanalysis data). 
In this case the bottom boundary conditions are 
observed SSTs and not bias‑adjusted GCM SSTs 
used in the downscaling process. But unlike the 
other downscaling simulations, we also forced 
this 0.5‑degree model with the surface pressure, 
temperature, wind and atmospheric moisture above 
850 hPa from the NCEP Reanalysis data. Forcing 
the atmospheric components between the GCM 
and 0.5‑degree model ensures that the large‑scale 
pressure fields from the GCM are preserved through 
to the 0.5‑degree model (see results in Section 
5.5). This process gives us a 0.5‑degree dataset that 
reproduces NCEP atmospheric pressure (as well as 
temperature, wind and moisture above 850 hPa) and 
thus allows comparison between the downscaled 

GCMs (that are forced only through SST) and the 
downscaled NCEP. The downscaled NCEP simulation 
that is created using atmospheric and SST forcing is 
referred to as the forced NCEP simulation.

As a second experiment, we also downscaled 
NCEP Reanalysis data using only the SST. This 
downscaled modelling output can be compared 
to the (atmospherically) forced NCEP downscaled 
modelling output to allow an assessment of 
the change in atmospheric fields produced by 
downscaling with only SST. The downscaled NCEP 
simulations that were created using only SST forcing 
are referred to as the unforced NCEP simulation. The 
same spectral nudging was applied between the 
0.5‑degree and 0.1‑degree models as in the Phase 1 
simulations, to ensure that the large‑scale patterns in 
the atmospheric fields were maintained through the 
downscaling process. 

Because downscaling of the NCEP Reanalysis 
produces a simulation at the same temporal and 
spatial resolution as the 0.5‑degree and 0.1‑degree 
simulations produced in Phase 1, it is possible to 
compare pressure and other fields for coincident 
periods, and thus use the NCEP Reanalysis to validate 
these simulations. 

4.2.2 Testing the spectral nudging of water 
vapour: the A2s simulation

CCAM has a number of switches controlling how the 
spectral forcing applies between each 0.1‑degree 
model and its host 0.5‑degree model. One of these 
switches changes how atmospheric moisture (water 

Table 4.2	 Summary of Phase 2 of the climate modelling program. Note that the B35 initialisation of 
CSIRO‑Mk3.5 GCM was used in Phase 1

Host Model 0.5° 0.1° 0.05°

NCEP Reanalysis 1 (forced by SST and atmosphere) ü ü

NCEP Reanalysis 1 (forced by SST only) ü ü

CSIRO‑Mk3.5 A2 emissions scenario (with spectral nudging of 
atmospheric moisture) ü ü

CSIRO‑Mk3.5 A2 emissions scenario (F35 initialisation) ü ü

CSIRO‑Mk3.5 A2 emissions scenario (G35 initialisation) ü ü

CSIRO‑Mk3.5 A2 emissions scenario (high resolution) ü

AWAP data regridded (0.1° over Tasmania) ü
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vapour) is forced between the two models; either 
the switch is set so that the global total water vapour 
loading is constant (called the global fix‑up option), 
with no forcing from the host 0.5‑degree model, or 
the global total water vapour is allowed to vary and 
the moisture is spectrally nudged from the 0.5‑degree 
model (spectral nudging option). Note that there is 
the potential for the relative humidity to go above 
100% with the spectral nudging of the water vapour. 
However, for this to occur, the unadjusted relative 
humidity must be very close to 100% as all changes 
are small. Also, if the humidity does exceed 100%, 
then it will be immediately lost as precipitation at the 
next time step.

While undertaking Phase 1 of the climate modelling 
program, we observed that changing this switch 
had a significant effect on the total volume of rain 
that fell over Tasmania. We chose to use the global 
fix‑up option. A single simulation (called the A2S 
simulation), using the CSIRO‑Mk3.5 CGM and the 
A2 SRES emissions scenario, was undertaken using 
the spectral nudging option. This simulation is 
not reported in detail in this report. A comparison 
between the two CSIRO‑Mk‑3.5 A2 simulations 
showed that only the rainfall differed between them. 
Further, the temporal pattern of rainfall was identical 
in the two simulations. The difference between the 
two simulations was evident in the spatial pattern 
and total volume of rainfall that fell on Tasmania. 
The spectral nudging simulation under‑estimated 
the rainfall in the west of Tasmania, resulting in a 
statewide annual rainfall close to 15% less than the 
global fix‑up simulation. The spatial pattern (and 
statewide annual total) displayed in the global fix‑up 
simulation is much closer to the observed values, 
thus the glocal model fix-up switch was chosen for 
the remainder of the simulations.

4.2.3 Three member ensemble to assess 
intra‑model variability

The six different GCMs chosen for this study have 
all been shown to perform reasonably well over 
Australia, that is, they give a good representation 
of Australian rainfall and temperature, and credible 
representations of ENSO (Smith & Chandler 2009). 
However, each model is constructed differently and 
thus they produce a range of projected values. This 
range gives us an estimate (albeit it a lower bound) 
on the uncertainty of future climate change that 

beyond what can be provided by using a single 
model and a single simulation. One question that 
remains is what part of the range of uncertainty is 
related to inter‑model variability (variation between 
models) and what part is related to intra‑model 
variability (variation between various simulations of 
the same model. Note that since GCM simulations are 
not tied to observations, the simulations evolve into 
independent realisations of the climate through their 
internal processes (even from the same initialisation), 
and ensemble members of the same model will not 
be the same. An ensemble consisting of multiple 
simulations from the same GCM initialised with 
different initial conditions can be used to evaluate 
the intra‑model variability over Tasmania due to 
differences in initial conditions and GCM internal 
variability. 

Climate Futures for Tasmania used a three‑member 
ensemble of simulations based on the CSIRO‑Mk3.5 
GCM. As part of the CMIP3 Project (Meehl et al 2007a), 
CSIRO Marine and Atmospheric Research produced 
three independent GCM simulations using 
CSIRO‑Mk3.5 for the period from 1871 until 2100, 
labelled B35 (the simulation used in Phase 1), F35 and 
G35. These simulations had the same external forcing 
but different initial conditions. Modelling output 
from this three‑member ensemble was downscaled 
in the manner used in Phase 1. Analysis of results is 
given in Section 5.7.

4.2.4 Demonstrating the effects of higher 
resolution: the 0.05‑degree simulation

Deficiencies in any model will most likely arise from 
the discrepancy between the limited complexity 
and resolution of the model, and the complexity 
of the physical world. The downscaled models 
used in the project are no exception, having both 
finite resolution and complexity. We have chosen a 
resolution of approximately 10 km for the primary 
panel of the downscaled simulations (post‑processed 
to a regular grid of 0.1‑degree). This resolution 
strikes a balance between the fine scale of results 
and manageability of the generated dataset (the 
complete dataset encompassing all simulations is 
more than 75 Tb). We could not afford the time nor 
funds to increase resolution significantly for all SRES 
emissions scenarios and GCMs; however, the detail 
contained in the 0.1‑degree simulations is adequate 
for most purposes. Indeed, the project simulations 
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temperature record for Hobart is taken at Ellerslie Rd, 
Battery Point. The temperature for other sites within 
a 10 km by 10 km cell centred at Ellerslie Rd may at 
times differ by several degrees.

A better approach when evaluating the simulations 
against observations is using a gridded observational 
dataset over the whole of Tasmania. 

Two such products exist and are in common use 
for Australia: SILO (Jeffrey  et  al  2001) and AWAP 
(Jones et al 2009). Both products are based largely on 
the same observing‑station records. AWAP was chosen 
because it is freely available and has been shown to 
have reduced network‑derived inhomogeneity in 
rainfall over Tasmania (Fawcett  et  al  2010), which is 
likely to make this dataset more robust for climate 
research. The AWAP data was supplied by the Bureau 
of Meteorology in February 2009, and was the most 
up‑to‑date revision of the AWAP data at the time. 
Since that time, further revisions of AWAP have been  
released (the latest in March 2010). These revisions of 
AWAP address some minor issues with the first release 
(February 2009), mostly pertaining to the long‑term 
trends in the data (D Jones 2010 pers comm 03 March). 

The remaining Climate Futures for Tasmania technical 
reports incorporate data from the latest release of 
AWAP, but it was not possible to include this data in 
this report. It should be noted that all gridded datasets 
based on station records are influenced by the location 
and number of stations. Tasmania has only a limited 
number of high‑quality observing stations (six for 
temperature) and this may effect the spatial pattern 
and temporal variability of observational products 
derived from these sites.

The AWAP data contains a range of observational data 
including maximum daily temperature, minimum 
daily temperature, daily rainfall, solar radiation and 
potential evaporation. The AWAP data does not 
contain pressure, thus necessitating the use of the 
forced NCEP Reanalysis simulation for validation of this 
variable over the Tasmanian region.

The AWAP data is produced on a 0.05‑degree grid. 
In order to allow direct comparison with the Climate 
Futures for Tasmania simulations, we interpolate the 
AWAP data for Tasmania on to the same 0.1‑degree 
grid used in the simulations.

are of a higher spatial and temporal resolution than 
any comparable study in Australia.

To examine the effect of increased model resolution, 
we performed one simulation where the primary face 
of the CCAM downscaled model has approximately 
6  m grid cells, and interpolate the output to a regular 
0.05‑degree grid. This simulation was done using 
the CSIRO‑Mk3.5 model (B35) as host GCM for the 
A2 emissions scenario. The downscaling process 
involved two steps, first generating the 0.5‑degree 
simulation, and then downscaling this directly to a 
0.05‑degree grid. 

The motivation for choosing this resolution 
was twofold. First, there are two interpolated 
observational datasets at 0.05‑degree resolution: 
AWAP (Joens et al 2009) and SILO (Jeffrey et al 2001). 
Both of these datasets have been used in several 
studies with hydrological and agricultural biophysical 
models (Bennett et al 2010; Holz et al 2010). Having a 
simulation at this resolution allowed us to examine 
the differences between model‑generated output 
at 0.05‑degrees and modelling output interpolated 
from our regular 0.1‑degree simulations to a 
0.05‑degree. Second, preliminary analysis of the 
simulations indicated that there was a large bias 
in local rainfall in the upper midlands region of 
Tasmania. We suspected that this bias was largely 
caused by the inability of the 0.1‑degree model to 
completely incorporate the effects of the orography 
on rain across Tasmania (notably the Great Western 
Tiers). Thus doubling the resolution of the simulation 
should significantly reduce the rainfall bias in this 
region. This issue is discussed, along with results from 
the simulations, in more detail in Section 5.8 of this 
report.

4.3 The AWAP data as a gridded 
observational dataset

In order to gain confidence in the projections 
produced by Climate Futures for Tasmania, it 
is necessary to show that the simulations can 
reproduce the current climate accurately. This is 
done by evaluating the modelling output against 
observational data. The modelling output for any 
variable is representative of the smoothed values over 
a 0.1‑degree by 0.1‑degree grid cell (roughly 10 km 
by 10 km), whereas station data are representative of 
only a single point within that grid. For example, the 
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The previous sections have dealt with the climate 
modelling program and the configuration of the 
0.5‑degree and 0.1‑degree models. In this section, 
the capacity of each simulation to reproduce the 
climate of the recent past (1961‑2007) is tested. This 
capacity is assessed by examining the simulations 
and comparing them against the observed gridded 
AWAP data, the global NCEP Reanalysis and the forced 
downscaled NCEP model discussed in Section 4.2.1. 
In this section, we concentrate on those variables 
that are available in gridded datasets, thus allowing 
for direct comparisons. We also compare the forced 
and unforced NCEP simulations to examine the effect 
of the SST‑only forcing on the surface pressure and 
other atmospheric variables.

An important point to consider when undertaking 
an assessment of the skill of a climate model is that 
GCM simulations provide an independent time 
series of the climate that does not correspond to the 
observational record; there is nothing in the GCM 
simulation to say that the weather on a particular day 
(or for a particular week or month) should be the same 
as the observed weather for that period. However, the 
models are expected to reproduce the typical range 
of weather and climate variations that are observed. 
That is, they reproduce the statistics of the mean 
climate. That GCMs do produce a global climate that 
is similar to the observed climate (including changes 
to temperature due to anthropogenic forcing) is a 
remarkable example of the skill of the models.

The downscaled simulations that have been produced 
are no more closely tied to the observed climate than 
the host GCMs. However, the downscaled simulations 
produce weather systems that are comparable to the 
observations and over a long enough period define 
a climate that closely matches the observations. 
Throughout the project, we have chosen 10 years, 
and often use 30 years, as the minimum time period 
for making valid comparisons between observations 
and the simulations. 

To assess and interpret the general climate variables 
in the downscaled simulations, the representation of 
current climate is compared to observed datasets. 
This comparison gives the context and framework for 
the interpretation of the modelling outputs for the 
future period and is included in the General Climate 
Impacts Technical Report (Grose  et  al  2010). For 
models to project future climate conditions reliably, 
they must as a minimum precondition, simulate the 
current climate state with some degree of fidelity. 
Furthermore, poor model skill in simulating present 
climate could indicate some systematic errors or 

biases in physical or dynamical processes. However, 
there are differences between the modelling outputs 
and observed data. Such differences can be due to 
a number of factors, for example internal natural 
variability, evolving unique local scale systems or 
errors in observational data. The main consideration is 
whether the model appropriately reflects the synoptic 
scale events (Denis  et  al  2002; Denis  et  al  2003). 
Differences between the modelling output and 
observed data do not negate the usefulness of the 
modelling but it does affect how the modelling 
outputs are used and interpreted. Models may be 
used as a tool for understanding processes in certain 
components of the climate systems, or the outputs 
may be used quantitatively to examine future trends.

In this section, the ability of the ensemble of 
simulations to reproduce the observed climate 
over Tasmania is evaluated. Both mean values 
and variability are assessed. In this report, we 
cannot evaluate the performance of every climate 
variable, and thus we have chosen to concentrate 
our assessment on five key variables: temperature, 
precipitation, solar radiation, potential evaporation 
and pressure. These variables were chosen as they 
have corresponding observational datasets and are 
all key fields in the assessments of future climate that 
are included in the remaining technical reports. In 
addition, the various simulations in both Phase 1 and 
Phase 2 are examined. Results from Phase 1 are mostly 
evaluated using six member means from the six 
downscaled simulations – called the six‑model‑mean.

5 Skill of the simulations at modelling 
Tasmanian climate
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5.1 Temperature

Tasmania’s temperature is strongly influenced by 
the surrounding ocean temperature. As explained 
in Section 2, the sea surface temperature (SST)  for 
all GCMs were bias-adjusted to match the observed 
SST between 1961 and 2000. Thus, we expect the 
mean temperature for Tasmania to closely match the 
observed temperature for this period, as portrayed 
by the AWAP data. However, just as important as 
getting the mean temperature correct is matching 
the temporal and spatial variability of the simulated 
temperature. This includes replicating variability at 
several different time scales, such as daily, seasonal 
and interannual.

Since station records and gridded AWAP data of 
temperature are based on temperature within a 
Stevenson Screen at approximately 1.2 m height, 
and are recorded as daily maximum and minimum 
temperature, the equivalent variables from the 
models are compared (daily maximum screen 
temperature, daily minimum screen temperature). 

The AWAP data is interpolated from the observing 
station data using a statistical model. As such, 
the spatial pattern of AWAP data is fixed, given 
a particular set of observations. This statistical 
scaling from limited observations may lead to 
under‑estimates in the variability of temperature 
across Tasmania in the AWAP dataset. There is good 
agreement between the six‑model‑mean and 
AWAP mean annual daily maximum temperature 
(Figure  5.1a and Figure  5.1c). The statewide mean 
daily Tmax for the six‑model‑mean is almost identical 
to the AWAP statewide mean value of 10.4  °C. The 
spatial correlation of mean daily Tmax between the 
AWAP data and the six‑model‑mean is 0.94. The 
variances of daily Tmax between the AWAP data and 
the six‑model‑mean are not as strongly correlated 
as the mean values (Figure  5.1b and Figure  5.1d). 
The standard deviation of the AWAP data is very 
smooth, showing smaller variance around the coast 
and rising to a maximum in the centre of the state. 
Shorter spatial scales are evident in the model mean 
variance, and there is higher variance on the east 
coast. The significance of these differences in terms 
of the model or AWAP data is unclear.

Figure 5.1	 Annual mean daily maximum temperature for AWAP (top) and the six‑model‑mean of the 
simulations (bottom) for the period 1961‑1990. The right hand column shows the corresponding 
standard deviation. For the six‑model‑mean, the standard deviation is the mean of the six 
standard deviation figures.
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Figure 5.2	 Distribution histograms of daily maximum temperature and daily minimum temperature 
for the period 1961‑1990 in the grid cells that cover two Tasmanian locations (Hobart and 
Osterley) in AWAP and each of the six simulations.
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We compared temperatures in the AWAP data and 
the models across the entire distribution of the 
data at two example locations (Figure  5.2).The grid 
cell covering Hobart is shown as an example of a 
populated coastal centre, and the grid cell covering 
Osterley is chosen as an example inland site. There 
is a high level of agreement between the models 
for both locations for both maximum and minimum 
temperature. The largest difference between the 
models and the AWAP data is seen as a small, but 
consistent, offset in minimum temperature for the 
inland site.

We assessed the ability of the models used in the 
project to reproduce observed seasonality by 
repeating the analysis of Figure  5.1, with output 
from the months December‑March (Figure  5.3) and 
May‑August (Figure  5.4). These periods are chosen 
for two reasons: four‑month periods (instead of 
three) allow for more of the year to be included in 
these calculations and the Tasmanian summer often 
extends well into March and so the December‑March 
period reflects the local conditions. Similarly, a 
winter period of May‑August also matches with local 
conditions. The mean temperature for the summer 
period shows  good agreement (spatial correlation 
of 0.91), while for the winter period the AWAP data 
appears to be warmer around the coast than the 
six‑model‑mean (but with a higher spatial correlation 

coefficient of 0.97). The variance in both the summer 
and winter periods is of the right magnitude in the 
six‑model‑mean, but the spatial pattern of variance 
is not closely aligned with the spatial pattern of the 
variance in the AWAP data.

It is important when comparing the AWAP data and 
the simulations to consider the limited number of 
observing stations (especially for temperature) that 
make up the observational network that forms the 
basis of the AWAP gridded data. This is particularly 
relevant on the sparsely populated west coast of 
Tasmania. 

The AWAP data is generally slightly warmer than 
the six‑model‑mean (less than  2  °C difference), but 
in parts of the east coast it is cooler (Figure  5.5a). 
Each of the six models simulate daily weather 
patterns and are unphased on a daily basis with each 
other and with the AWAP data. Thus on each day 
the difference between any of the six models, the 
six‑model‑mean and the AWAP data may be large. 
However, Figure 5.5b and Figure 5.5c show that over 
the 30‑year period the daily values of the model 
display the correct seasonal trends and variation 
with the six‑model‑mean value within one standard 
deviation of the AWAP data 67% of the time. In the 
north of the state, one standard deviation is around  
3 °C, while in the south it is up to 6 °C. 

(a) (b)

(c) (d)
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Summer Temperature

Winter Temperature

Figure 5.3	 Mean daily maximum summer temperature (left column) for the months December‑March for 
the period 1961‑1990, along with the standard deviation of the daily mean (right column). 
The top row is AWAP, with the six‑model‑mean on the bottom row.

Figure 5.4	 Mean daily maximum winter temperature (left column) for the months May‑August for the 
period 1961‑1990, along with the standard deviation of the daily mean (right column). AWAP 
is on the top row, with the six‑model‑mean on the bottom row.
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between the six‑model‑mean standard deviation and 
that for each model shows that the spatial pattern 
is consistent across the six models. Over the period 
May to August, the daily outputs show that the 
six‑model‑mean for Tmin is again similar to the AWAP 
data (Figure  5.8), but the standard deviation again 
shows more spatial structure in the six‑model‑mean 
than the AWAP data. 

The seasonal differences between the AWAP data and 
the model mean are all generally less than 2 °C, and 
the standard deviations are similar for each season 
(Figure  5.9). In particular, for Tmin there was no 
difference between the smooth variance of the AWAP 
data and the six‑model‑mean variance. 

In order to simulate the observed diurnal 
temperature range, the seasonality of the daily 
minimums and maximums of temperature in the 
model must be correctly aligned (for example, a hot 
summer day is likely to have a warmer overnight 
minimum temperature). The ability to reproduce 
diurnal range is thus more difficult than maximum 
or minimum temperature alone, and thus gives a 
second order assessment of the model performance. 
We show the mean diurnal range and the variance 
of the diurnal range for the periods December to 
March (Figure 5.10) and May to August (Figure 5.11). 
The models do a good job of capturing the broad 
features of the diurnal range exhibited by the AWAP 
data, as can be seen in the two figures. Similarly, the 
comparison of standard deviation between the AWAP 
data and the six‑model‑mean shows that the models 
are in the right temperature range. Once again, the 
standard deviation of the AWAP data is very smooth, 
while the six‑model‑mean displays a dependence on 
orography.

The ability of the simulations to reproduce the seasonal 
mean and seasonal variance is equally as important 
as capturing the daily values. Figure 5.6 shows that in 
summer the model mean is generally slightly too hot, 
but in autumn and winter this situation is reversed. 
In spring, the west is too cold but the east is too 
warm. The spatial correlation between the monthly 
values of the AWAP data and the monthly mean for 
the six‑model‑mean is very high, above 0.9 over the 
entire state, and generally above 0.95. The standard 
deviation for the model monthly mean is close to that 
for the AWAP data in summer, autumn and winter. 
In spring, the variance of the AWAP data resembles 
a ‘bullseye’ target, with highest values in the centre, 
while the model variance shows more structure 
and is generally higher on the east coast than the 
corresponding region in the AWAP data. The bottom 
graph in Figure 5.6 shows how closely clustered the 
model values are during the period where the SST 
has been bias‑adjusted to observations. This close 
agreement between all of the models and the AWAP 
data is in part the result of the bias‑adjustment of 
the GCM SSTs based on the period from 1961‑1990. 
This bias‑adjustment ensures that the mean monthly 
sea surface temperature of all the GCMs matches the 
observed SST monthly climate over this period. The 
mean surface temperature over a relatively small 
island like Tasmania is strongly dependent on the 
surrounding sea surface temperature.

The daily minimum temperature (Tmin) performs 
similarly to the maximum temperature. The daily 
outputs show the six‑model‑mean performing well 
against the AWAP data for the period December to 
March (Figure 5.7). The standard deviation for AWAP 
over this period is very uniform over the state. The 
model mean standard deviation shows more of a 
dependence on orography and is generally higher 
than the variability of the AWAP data. Comparison 

Figure 5.5	 Comparison of AWAP and the six‑model‑mean temperature difference for 1961‑1990. The 
figure on the left shows the mean daily difference, the middle figure shows the standard 
deviation of this difference, and the figure on the right shows the correlation between the 
daily value of AWAP and the daily six‑model‑mean over the 30‑year period.
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Figure 5.6	 Seasonal differences between AWAP and the six‑model‑mean for daily maximum temperature 
for the period 1961‑1990. The variances are calculated using the monthly mean values of 
daily maximum temperature for each season. The bottom graph shows the monthly statewide 
mean daily maximum temperature for each simulation (coloured) and for AWAP (black line). 
Note the strong alignment of the statewide mean of the simulated temperatures.
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Summer Overnight Minimum Temperature
1961-1990

Figure 5.7	 Mean daily minimum summer temperature (left column) for the months December‑March for 
the period 1961‑1990, along with the standard deviation of the daily mean (right column). 
AWAP is on the top row, with the six‑model‑mean on the bottom row.

Figure 5.8	 Mean daily minimum winter temperature (left column) for the months May‑August for the 
period 1961‑1990, along with the standard deviation of the daily mean (right column). AWAP 
is on the top row, with the six‑model‑mean on the bottom row.
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Figure 5.9	 Seasonal differences between AWAP and the six‑model‑mean for daily minimum temperature 
for the period 1961‑1990. The variances are calculated using the monthly mean values of 
daily minimum temperature for each season. The bottom figure shows the monthly statewide 
mean daily minimum temperature for each model (coloured) and for AWAP (black line). Note 
the strong alignment of the statewide mean of the simulated temperatures.
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Summer Diurnal Temperature Range

Figure 5.10	The mean diurnal temperature range for AWAP and the six‑model‑mean for the months 
December‑March for the period 1961‑1990 (left column), along with the standard deviation 
of the diurnal range (on a daily basis) over the thirty year period (right column).

Figure 5.11	The mean diurnal temperature range for AWAP and the six‑model‑mean for the months 
May‑August for the period 1961‑1990 (left column), along with the standard deviation of the 
diurnal range (on a daily basis) over the thirty year period (right column).
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5.2 Precipitation
Precipitation is a result of complex interactions 
between temperature, moisture and wind, and 
is therefore more likely to be independent of the 
bias‑adjusted sea surface temperatures (SST). To see if 
inter‑model variability is large for precipitation, annual 
total rainfall for each of the six downscaled GCMs is 
compared in Figure 5.12, along with six‑model‑mean 
annual rainfall and the AWAP annual rainfall. All of 
the models show a similar pattern of annual rainfall 
for the period 1961‑1990. The statewide mean 
annual rainfall for the six‑model‑mean is 1385 mm. 
This compares well with the statewide mean annual 
rainfall calculated from the AWAP data of 1390 mm. 
The spatial correlation between the six‑model‑mean 
and the rainfall from the AWAP data is 0.63. 

On a daily basis, rainfall is not normally distributed: 
the distribution of number of days with a certain 
volume of rain is closer to a power law (with days of 
no rain being the most common result). Due to the 
shape of the distribution of rain, it makes more sense 
to plot number of days with certain volumes of rain 
or as percentiles rather than as a mean and variance. 

There is strong agreement between the AWAP data 
and the six‑model‑mean across the spectrum of rainy 
days (shown for the summer period December to 
March in Figure 5.13). The most noticeable features of 
these figures are the under‑estimate of no‑rain days 
in the six‑model‑mean for the Tamar Valley and upper 
midlands region, and the under‑estimate of heavy 
rain days in the west. Both of these observations 
can be explained in part by the lower resolution of 

the orography across Tasmania in the downscaled 
simulations. The model does not fully account for 
the steep mountain ranges inland of the west coast 
that catch a lot of rain, nor the steep drop from the 
Western Tiers just west of the upper midlands, that 
casts a rain‑shadow over this region and results 
in significantly less rain than surrounding areas. 
This hypothesis is examined using the 0.05‑degree 
simulation discussed below.

There is similarly strong agreement between the 
AWAP data and the six‑model‑mean when we 
consider percentiles of daily rain for the period 
December to March (Figure  5.14). Once again, the 
lower rain in the mountainous west and higher rain 
in the Tamar Valley/upper midlands region is seen in 
the six‑model‑mean.

For the winter months May to August, we can see 
higher rainfall in the six‑model‑mean relative to 
the AWAP data in the Tamar Valley/upper midlands 
and the lower rainfall in the mountainous westerly 
region (Figure  5.15 and Figure  5.16). Interestingly, 
the low rainfall is least evident during winter in the 
95th‑percentile rainfall days. This percentile matches 
well with the AWAP data.

The errors in rainfall present in the simulations in 
the Tamar Valley/upper midlands region is clearly 
visible across all seasons, especially winter and spring 
(Figure 5.17). The under‑estimate across the western 
ranges is clear in summer, but less so in other seasons. 
However, statewide monthly mean rainfalls are very 
close to values calculated from the AWAP data.
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Figure 5.12	The annual total rainfall (mm) for each of the six downscaled GCMs for the period 1961‑1990, 
along with the six‑model‑mean and AWAP (bottom row, right).
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Figure 5.13	Comparison of the distribution of daily rainfall in AWAP (top) and the six‑model‑mean 
(bottom) for the months December to March for the period 1961‑1990. Displayed is the 
number of days per year with no rain (far left), less than 5 mm of rain (middle left), greater 
than 15 mm of rain (middle right) and greater than 30 mm of rain (far right column).

Figure 5.14	Comparison of the distribution of daily rainfall in AWAP and the six‑model‑mean for the 
months December to March for the period 1961‑1990. Displayed (left to right) are the 25th, 
75th, 90th and 95th‑percentile rain for AWAP (top) and the six‑model‑mean (bottom).
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Figure 5.15	Comparison of the distribution of daily rainfall in AWAP (top) and the six‑model‑mean 
(bottom) for the months May to August for the period 1961‑1990. Displayed is the number 
of days per year with no rain (far left), less than 5 mm of rain (middle left), greater than 
15 mm of rain (middle right) and greater than 30 mm of rain (far right).

Figure 5.16	Comparison of the distribution of daily rainfall in AWAP and the six‑model‑mean for the 
months May to August for the period 1961‑1990. Displayed (left to right) is the 25th, 75th, 
90th and 95th‑percentile rain for AWAP (top) and the six‑model‑mean (bottom).
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5.3 Solar Radiation

Estimates of solar radiation at the earth’s surface with 
complete spatial coverage have only been possible 
since 1990 with the advent of satellite records of cloud 
cover and albedo. The mean annual solar irradiance 
from the AWAP data and the mean of the simulations 
is shown in Figure  5.18. The mean difference is 
‑0.1 MJ m-2 d-1, and there is an east‑west pattern to 
the difference, where the models showing higher 
radiation than the AWAP data on the east coast, and 
lower on the west coast. There is a strong correlation 
(correlation coefficient of 0.98), but more spatial 
detail and stronger gradients in the simulations than 
in the AWAP data. 

It is not possible to quantify the contribution from 
errors and limitations in the AWAP data and from the 
model in this difference. The east‑west pattern to the 
difference is not strongly correlated with rainfall, but 
is plausibly related to cloud cover. The AWAP dataset 
(or any other available gridded observational dataset) 
does not include cloud cover and so the relationship 
to observed cloud is not possible to test.
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Figure 5.17	The seasonal differences (%) between 
AWAP and the six‑model‑mean for 
annual rainfall. The bottom figure shows 
the statewide mean rainfall value (mm) 
by month for each of the six downscaled 
models (coloured) and AWAP (black).
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Figure 5.18	Mean downward solar radiation for the period 
1961 2007 for AWAP, the six model‑mean, 
and the difference between them.
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5.4 Potential evaporation

Contributors to the loss of water from the soil to the 
atmosphere are physical processes (evaporation) 
and a term that includes the loss of water through 
vegetation (evapotranspiration). For each of these 
there are two possible estimates: total evaporation 
given the water present and potential evaporation 
assuming unlimited water. While evaporation terms 
are highly quantifiable phase transition processes, 
they are difficult to reliably quantify with complete 
spatial coverage over heterogeneous land cover 
under typical environmental conditions. In any 
estimate of evaporation, there are assumptions 
or simplifications about the type and proportion 
of land cover, and then a balance between the 
comprehensiveness of the equation used to describe 
evaporation and the quality of the input data. 
Equations for this estimate use up to four variables 
as input: radiation, temperature, wind and relative 
humidity. Some equations replace some of these 
terms with a constant since the quality of the input 
data is not considered appropriate (for example 
wind).
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Figure 5.19	Mean annual total potential evaporation 
(mm) for the period 1961‑2007 for AWAP, the 
six‑model-mean, and the difference between 
them.

Potential evaporation calculated within the model 
has the advantage of having complete coverage of 
input variables to draw from. The downscaled model 
(CCAM) uses all four input variables listed above 
within the Penman‑Monteith equations (Allen et al. 
1998). The AWAP dataset uses the Priestley equations 
of potential evaporation (Raupach 2000; Raupach 
2001), based on net radiation and soil heat flux. 
The equation replaces the turbulence term of the 
calculation (incorporating wind speed and relative 
humidity) with a dimensionless empirical multiplier 
(the Priestley‑Taylor coefficient). This is considered 
an acceptable compromise for this calculation from 
observed data since the datasets of wind and relative 
humidity are less robust than for temperature or 
rainfall (Jones et al 2009).

Mean annual potential evaporation for the overlap 
period 1961-2007 for the mean of models and for 
the AWAP data is shown in Figure  5.19. As with 
radiation, there is a small mean difference between 
the simulations and gridded observed data (20 mm) 
and a high spatial correlation (0.83) with more spatial 
detail in the simulations compared to the AWAP data.
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5.5 Pressure 
The AWAP dataset does not contain an observed 
pressure field. Thus, this dataset cannot be used to 
compare pressure from the models with gridded 
observations. We chose to use the NCEP Reanalysis 
as a validation dataset. The NCEP Reanalysis features 
a global suite of assimilated observations on a 
2.5‑degree grid. At this resolution, the pressure field 
from NCEP Reanalysis strongly incorporates available 
observations.

As was discussed in Section 4.2.1, we have 
undertaken two downscaling simulations from the 
NCEP Reanalysis. The first simulation is the forced 
NCEP simulation. This simulation downscales NCEP 
from the global 2.5‑degree dataset to the 0.5‑degree 
model using sea surface temperature (SST) as the 
bottom boundary condition and spectrally nudges 
the atmosphere to maintain the same large‑scale 
surface pressure, temperature, wind fields and 
850 hPa moisture. By forcing these fields (Figure 5.20 
to Figure 5.23), we have ensured that the large‑scale 
patterns in these 0.5‑degree simulations of NCEP are 
similar to the global NCEP reanalysis and thus the 
pressure field from the downscaled model gives us 
a good representation of pressure in the Australian 

region. The downscaling process from the 0.5‑degree 
simulations to the 0.1‑degree simulations is identical 
to that used for the six GCMs.

The 0.5‑degree downscaled model accurately 
reproduced annual and seasonal NCEP mean 
monthly pressure fields (Figure  5.20). The forcing 
of surface pressure, temperature, wind fields and 
atmospheric moisture is sufficient to ensure that the 
downscaled model is very highly correlated with the 
global NCEP Reanalysis (above 0.95) throughout the 
area of interest.

The downscaling process preserves temperature 
characteristics between the raw NCEP Reanalysis and 
the forced 0.5‑degree downscaled simulation of the 
same (Figure 5.21 and Figure 5.22). The temperature 
relationships are discussed further in the General 
Climate Impacts Technical Report (Grose et al 2010).

Pressure is a large‑scale driver of weather, and thus 
simulating the correct overall pressure fields in 
our models is important. Equally as important is 
simulating the correct passage of pressure fields 
across the Australian region at the correct time of 
year. An examination of pressure fields as a driver 
of weather in our models is included in the General 
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downscaled 0.5‑degree simulations (bottom row) for the period 1961‑1990. The left column 
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March and the right column the months May to August. 
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Climate Impacts Technical Report (Grose et al 2010). 
In this report, we confine our attention to whether 
the monthly mean pressure fields produced by 
the suite of 0.5‑degree models are similar in spatial 
distribution and variance to the downscaled NCEP 
simulation.

The pressure field of the six‑model‑mean displays a 
very similar pattern to the 0.5‑degree downscaled 
NCEP model for each of the four seasons (Figure 5.23). 
The range of pressures displayed and the longitude 
of the pressure gradient are closely aligned. One 
difference between the six‑model‑mean and 
downscaled NCEP pressure fields is the orientation 
of the pressure gradient that passes south of New 
Zealand. In the downscaled NCEP field (and also the 
raw NCEP Reanalysis), the longitude of the gradient 
varies with latitude (this is especially noticeable in 
winter). In the six‑model‑mean, the longitudinal 
variation with latitude is less pronounced. The models 
correctly simulate the changes in the mean pressure 
field between seasons. Similarly, the standard 
deviation of the model mean varied between the 
seasons in phase with the NCEP standard deviation. 
Over Australia, the models gave similar variance to 
the NCEP simulation, but some differences emerged 
in the Southern Ocean, especially in winter and 
spring. 

The second simulation using the NCEP Reanalysis 
data is the unforced NCEP simulation. This simulation 
employs the same downscaling technique as 
that used for the GCMs: SST only forcing from the 
host to the 0.5‑degree model, and then SST and 
atmospheric forcing between the 0.5‑degree model 
and 0.1‑degree model. This allows us to compare the 
atmospheric variables in both simulations and thus 
examine the effects of the SST‑only downscaling.

As discussed earlier in this report, global climate 
models are not forced by observations of current 
climate. As such they often have biases that cause 
their simulation of the current climate to differ from 
the observed current climate. To more accurately 
represent the current climate, we chose to bias‑adjust 
the SSTs from the GCMs. The decision to bias‑adjust 
SST means that forcing the atmosphere was not 
appropriate (Katzfey et al 2009). The consequences of 
this decision are examined below. 

In comparing the forced and unforced NCEP 
simulations, we concentrated on three variables: 
mean monthly sea level pressure, mean annual rainfall 
and mean monthly daily maximum temperature 
(Tmaxscr). The period of comparison is between 
January 1961 and December 2006.

The annual mean daily maximum screen temperature 
(Tmaxscr) is very similar for both the forced and 
unforced NCEP (Figure  5.24). The simulations have 
very closely matching spatial structure and similar 

values. There is a slight cold bias of less than 2  °C 
over Australia in the unforced simulation compared 
to the forced simulation. The temporal correlation 
between the two simulations (not shown) is greater 
than 0.98, reflecting the strong seasonal signal for 
screen temperature. Given the common SST used to 
force both simulations this strong similarity for screen 
temperature validates the approach, even though 
the temperature over land can evolve independently 
in the unforced simulation.

The unforced and forced mean monthly mean sea 
level pressure display a generally similar structure in 
the south‑east Australian region. The unforced mean 
monthly mean sea level pressure exhibits a stronger 
meridional gradient than the corresponding forced 
surface pressure (Figure  5.25). A notable feature 
of surface pressure in many climate models is the 

Downscaling Temperature
Raw NCEP 

surface air temperature
Downscaled NCEP 

surface temperature

Figure 5.21	Mean surface temperature for the period 
1961‑1990 from (a) the global NCEP 
Reanalysis and (b) the 0.5‑degree 
downscaled simulation of NCEP.
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change of curvature of the isobars directly south of 
Tasmania to a slightly more meridional configuration. 
The unforced NCEP surface pressure displays less 
curvature of the isobars in this region than the forced 
NCEP simulation. The differences between the two 
versions of NCEP ranges between approximately 
minus 2 hPa and 2 hPa. 

The spatial structure of the unforced NCEP mean 
annual rainfall resembles the structure of the 
corresponding forced NCEP rainfall (Figure 5.26). This 
suggests that the unforced simulation is resolving the 
main climate features driving rainfall over the region. 
However, the unforced simulation does have a wet 
bias south of Tasmania, possibly related to the more 
zonal flow of the winds. 

The simulation forced using NCEP atmospheric 
fields gives some measure of how well the model 
can reproduce the observed regional climate. The 
simulation using only NCEP SSTs (no atmospheric 
forcing) then gives a measure of how well the 
downscaled model can reproduce the observed 
climate without atmospheric forcing. This then gives 
us a measure of how accurately the downscaling is 
preserving the atmosphere of the GCM simulations. 

It is clear from Figure 5.24, Figure 5.25 and Figure 5.26 
that the decision to use only SST to force the GCM 
downscaling simulations does have an effect on the 
resulting patterns of rainfall, temperature and mean 
sea level pressure (and by implication all atmospheric 
variables) when compared to combining SST and 
atmospheric forcing. However, GCM rainfall and 
circulation patterns are not perfect. GCMs are 
designed to be correct in the long term and at the 
spatial resolution of hundreds of kilometres (their 
grid scale). The NCEP Reanalysis, while not perfect, 
attempts to analyse the atmospheric circulation as 
accurately as possible within the limitations of the 
available observational data, the analysis system 
and the resolution used. By only using SST as forcing, 
we allow the downscaled model to evolve its own 
atmospheric circulation independent of the bias or 
errors that exist in the host GCMs and trust that the 
downscaled model can produce an atmosphere that 
is as close to, if not closer, than the observed climate 
over the region of interest. The bias-adjustment of 
the SSTs from the GCMs brings the climatology of 
the SSTs closer to observed climate, and draws the 
mean atmospheric circulation closer to the observed 
pressure. The results presented in this section 
demonstrate that the downscaled model (forced with 
only SST) can produce a modelled climate close to 
the observed climate and thus largely validates this 
approach.
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Figure 5.24	The mean daily maximum screen temperature for (a) the unforced NCEP simulation and 
(b) the forced NCEP simulation and (c) the difference between the unforced and forced 
simulations, for the time period 1961‑2006.
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Figure 5.25	The mean surface pressure for (a) the unforced NCEP simulation (b) the forced NCEP 
simulation and (c) the difference between the two, for the time period 1961‑2006.
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Figure 5.26	The mean annual rainfall for (a) the unforced NCEP simulation (b) the forced NCEP simulation 
and (c) the difference between the two, for the time period 1961‑2006.
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Figure 5.24 and Figure 5.26 show that for temperature 
and rainfall the regions of greatest difference 
between the forced and unforced NCEP simulations 
occur over land in the mountainous regions along 
the east coast of Australia. This rainfall result is not 
surprising. The forced NCEP simulation is forced so 
that the broad spatial features of the temperature 
(and pressure) are similar to the global 2.5-degree 
NCEP Reanalysis. This constrains the ability of the 
downscaled model to freely evolve the temperature 
in regions of complex topography. Over land, the 
unforced model is free to evolve its own temperature, 
rainfall and pressure. Thus, it is better able to model 
the effects of the topography on the rainfall. This 
result further reinforces the decision to force the 
downscaled models with only SST from the GCMs 
(and NCEP in the unforced model run).

We have shown that the unforced NCEP model 
produces an atmosphere that has similar 
characteristics and mean pattern to the forced 
NCEP model. While this is only a preliminary analysis, 
this analysis demonstrates that the method of forcing 
the downscaled models with only SST is valid and 
allows for the creation of an atmospheric circulation 
that is similar to the observed climate. 

The time series for each of temperature, rainfall and 
pressure are shown in Figure  5.27. This shows that 
the (spatial) mean temperature for the forced and 
unforced downscaled NCEP simulations, while not 
in‑phase, are similar in magnitude and variability 
(standard deviation (unforced) of 0.24 and standard 
deviation (forced) of 0.26), and display a similar trend 
over the 46 years shown. Rainfall is consistently 
too high in the unforced simulation, indicating the 
presence of a bias. The variability of the unforced 
rainfall (standard deviation of 35.7) is reduced 
compared to the forced model (standard deviation 
of 50.8) and both models show a slight increasing 
trend. The wet bias in the unforced model is due to the 
strongly increased rainfall over the Southern Ocean 
that is seen in the unforced model (Figure 5.26). The 
mean sea level pressure in the unforced simulation 
is higher than for the forced simulation over most of 
the domain (the exception being the southern most 
area of the domain). This is reflected in the time series 
where the spatial mean of rainfall in the unforced 
simulation is higher than for the forced simulation. 
The variability of the unforced model (standard 
deviation of 0.555) is just over half that of the forced 
model (standard deviation of 0.957). Neither model 
displays a discernible trend over the 46‑year period.

Figure 5.27	Time series (1961‑2006) of the annual mean temperature, total rainfall and mean pressure 
for the 0.5‑degree simulations (over the output domain). The unforced NCEP simulation is 
shown in blue while the forced NCEP simulation is red.
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5.6 Downscaling

The principle of the downscaling process is to increase 
our knowledge of Tasmania’s climate by increasing 
the resolution of the models, while still maintaining 
consistency with the global climate models that 
form the basis of the modelling projections to 
2100. Accordingly, temperature is better simulated 
over Tasmania in the 0.1‑degree models than in the 
0.5‑degree models, or in the GCMs, caused by the 
better representation of topography (Figure  5.28). 
Similarly, the rainfall is better simulated in the 
0.1‑degree models, with increased rainfall on the 
west coast of Tasmania and the corresponding 
rain shadow in the east (Figure  5.29). We use the 
GFDL‑CM2.1 GCM as an example, since the process 
and results are similar for all GCMs that were used in 
the project.

A necessary condition for the downscaling process 
to be considered effective is that the long‑term 
behaviour of variables across the downscaling 
region behave in a similar manner to the host GCM. 
That is, the downscaling process is adding detail to 
the modelling output, but not changing the overall 
behaviour or trend seen in the GCM. 

The mean temperature of the entire region shown 
in Figure  5.28 (Tasmania and the immediately 
surrounding ocean) is 12.99 °C for the GCM, while for 
the 0.5‑degree and 0.1‑degree models it is 13.74 °C and 
13.48 °C respectively. Over the land surface alone, the 
mean temperature of the 0.5‑degree and 0.1‑degree 
models are close to the value of 10.4  °C calculated 
with the AWAP data. The downscaling dramatically 
increases the total rainfall over the Tasmanian region 
when compared to the GCM, because the GCMs take 
almost no account of the Tasmanian topography. For 
the region shown (Tasmania and the immediately 
surrounding ocean) in Figure 5.29, the mean annual 
rainfall in the GCM is 746 mm, while it is 1006 mm 
and 1175 mm for the 0.5‑degree and 0.1‑degree 
models, respectively. Note that these rainfall values 
are calculated over the entire panel and not just over 
the land surface. Over the land cells in the 0.1‑degree 
model the mean annual rainfall increases to 1385 
mm. This compares with the annual mean rainfall 
calculated from the AWAP data for Tasmania over 
the same period of 1390 mm. Thus, the downscaling 
process results in a decreasing difference between 
the model and observed rainfall. Similar results hold 
for each of the remaining five GCMs and downscaled 
models, but are not shown in this report. 

5.6.1 Temperature

The downscaled 0.5‑degree model used the monthly 
sea surface temperature from the host GCM as the 
bottom boundary condition. The 0.5‑degree model 
is in turn used to force the 0.1‑degree model. As 
such, we would expect that on a monthly basis the 
temperature in the host GCM and the 0.5‑degree 
model shows a strong temporal correlation. The 
temporal correlation between monthly mean surface 
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Figure 5.28	Mean temperature for Tasmania for the period 1961‑1990 from (a) the GCM GFDL‑CM2.1 
(b) the 0.5‑degree downscaled simulation of the same GCM and (c) the 0.1‑degree 
downscaled simulation of the same GCM.
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temperature in the GCM and the 0.1‑degree model is 
similar to that between the GCM and the 0.5‑degree 
model (Figure  5.30), showing that the downscaling 
process also maintained the general trend of the 
GCM. 

This is further reinforced in Figure  5.30c, which 
shows the very strong temporal correlation of the 
monthly mean surface temperature between the 
0.5‑degree and 0.1‑degree models. The spectral 
nudging between the 0.5‑degree and 0.1‑degree 
models is designed to preserve the large‑scale 
weather patterns from the 0.5‑degree model into 
the 0.1‑degree model, and thus a strong correlation 
between the 0.5‑degree and 0.1‑degree models. The 
downscaling process also maintained the general 
trend of the GCM (Figure 5.30a and Figure 5.30b).

5.6.2 Rainfall
Rainfall from the GCM is not used to constrain the 
0.5‑degree or 0.1‑degree simulation in any way. In 
the downscaled 0.5‑degree models, the rainfall is 
internally generated through such mechanisms as 
orographic lifting of moist parcels of air, through 
the passage of frontal systems and though other 
mechanisms that are observed in a climate system. As 
such, we do not expect a strong temporal correlation 
between GCM rainfall and rainfall produced by the 
downscaling process. As with temperature, the 
temporal correlation of rainfall between the GCM 
and the 0.5‑degree and 0.1‑degree has a plausible 
pattern (Figure 5.31a and Figure 5.31b). The stronger 
correlations on the north and west coasts reflect 
the more seasonal nature of rain in these regions, as 
compared to the east coast. The 0.1‑degree model also 
generates its own rainfall, however as rain‑making 
systems (fronts, cutoff lows et cetera) are large‑scale 
phenomena, and the atmosphere is forced between 
the 0.5‑degree and 0.1‑degree simulations so as 
to preserve these large‑scale features, the rainfall 
was strongly correlated between the two models 
(Figure 5.31c). 

So far, in this section we have only considered 
the modelling output on a monthly basis. The sea 
surface temperature from the GCM modelling 
output is applied in a monthly time step, and 
so comparing monthly modelling output to the 
GCM is appropriate. However, for the downscaling 
between the 0.5‑degree and the 0.1‑degree model 
the atmospheric nudging above 850 hPa is applied 
continuously. The correlations corresponding to 
those shown in Figure  5.30c and Figure  5.31c for 

the daily outputs are similar to the monthly outputs, 
although the correlation does drop slightly as one 
would expect. This shows that the downscaling 
between the 0.5‑degree and 0.1‑degree models 
maintained the overall structure of the 0.5‑degree 
model.

The value of the CCAM downscaled simulations over 
GCMs can be judged by the increase in correlation 
between the finer‑resolution models and the gridded 
AWAP data. The GFDL‑CM2.1 downscaled 0.1‑degree 
model clearly has more skill in simulating the 
observed spatial patterns in rainfall and temperature 
over Tasmania than its host GCM (Table  5.1). The 
GCM shows low correlations of 0.45 for temperature 
and 0.28 for rainfall, while the 0.5‑degree model 
improves this correlation, and the 0.1‑degree 
model improves on it again. The 0.05‑degree model 
that will be discussed later, further increases this 
correlation, showing that downscaling achieves 
the aim of adding local information over Tasmania, 
thus improving the realism of the simulations of 
the current climate. An increased ability to simulate 
and explain the current climate gives us greater 
confidence that we can accurately project the future 
climate change over Tasmania. The remaining GCMs 
and their corresponding downscaled models yield 
similar correlation statistics.

5.6.3 Pressure 

Examining variations in pressure, or characteristics 
of the pressure field just over the Tasmanian region 
is not appropriate given the length-scales involved 
and the small size of the island. When examining 
pressure fields we only considered the 0.5‑degree for 
a region incorporating Australia, New Zealand, parts 
of Indonesia and the Southern Ocean (Figure 3.5c).

The 0.5‑degree model faithfully reproduced the 
annual and seasonal mean pressure fields present 
in the GCM (Figure  5.32). More importantly, it 
reproduced the changes in the mean pressure field 
between summer and winter as well as the variance 
and spatial distribution of mean monthly pressure 
fields present in the GCM (Figure  5.33), although 
some differences exist, noticeably in the Southern 
Ocean, where the resolution of the downscaled 
model starts to decrease, and in the increased 
variance in the 0.5‑degree downscaled model over 
continental Australia.

Model resolution Mean Monthly Temperature Mean Monthly Rainfall

GCM 0.45 0.28

0.5° 0.79 0.44

0.1° 0.93 0.63

Table 5.1	 Spatial correlations between the 0.1‑degree AWAP data and GFDL‑CM2.1 as the raw GCM 
and downscaled to 0.5‑degree and 0.1‑degree for the period 1961‑1990. 
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Figure 5.30	Temporal correlation between monthly mean surface temperature in the GCM GFDL‑CM2.1 
and the downscaled (a) 0.5‑degree and (b) 0.1‑degree simulations for the period 1961‑1990, 
as well as between the (c) 0.5‑degree and 0.1‑degree simulations.
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Figure 5.31	Temporal correlation of mean monthly rainfall between the GCM GFDL‑CM2.1 and the 
downscaled (a) 0.5‑degree and (b) 0.1‑degree simulations for the period 1961‑1990, as well 
as between the (c) 0.5‑degree and 0.1‑degree simulations.
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To this point, our analysis has been confined to 
the region of the globe where the downscaled 
simulations are designed to outperform their host 
GCM. However, since CCAM is a global atmospheric 
model its performance outside of Tasmania is also of 
interest. The summer mean sea level pressure from 
the NCEP  Reanalysis, the GCM GFDL‑CM2.1 and the 
0.5‑degree downscaled GFDL‑CM2.1 is shown in 
Figure  5.34. The pressure distribution for both the 
GCM  (b) and the downscaled results (c) are generally 
very similar to the reanalysis data (a), indicating 
the GCM can reproduce the current climate, as 
represented by the NCEP Reanalysis patterns well, 
even without any direct observational input. The 
locations and intensities of the major high and low 

pressure centres, such as the northern Pacific and 
Atlantic lows, the monsoon low over Indonesia, 
and the tropical highs over the South Pacific Ocean, 
Atlantic Ocean and Indian Ocean are all very similar. 
The main areas of discrepancy are in the polar 
regions particularly in the northern hemisphere, 
where there is less observational data to constrain 
the reanalyses and where impacts of ocean and 
sea‑ice distributions are greatest. In this series of 
simulations, the downscaled simulation produces 
a better representation of the pressure field around 
Tasmania than the GCM (Figure 5.34d and Figure 
5.34e). In the GCM, the westerlies are too strong. The 
strength of these westerlies has a significant impact 
on the rainfall over Tasmania.

Correlation coefficient 
GCM – 0.1-degree simulations

Correlation coefficient 
0.5-degree – 0.1-degree simulations

Correlation coefficient 
GCM – 0.5-degree simulations
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Figure 5.33	Standard deviation in the mean monthly pressure field (hPa) for (a) the GCM GFDL‑CM2.1 
and (b) the corresponding 0.5‑degree downscaled simulation for the period 1961‑1990.
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Figure 5.32	Mean pressure fields for the GCM GFDL‑CM2.1 (top row) and the corresponding 0.5‑degree 
downscaled simulation (bottom row) for the period 1961‑1990. The left column shows the 
annual pattern, the middle column shows the pattern for the months December to March and 
the right column the months May to August.
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Figure 5.34	Global summer mean‑sea‑level pressure  for (a) NCEP reanalysis, (b) the GCM GFDL‑CM2.1 
(c) the corresponding 0.5‑degree downscaled simulation, (d) difference between NCEP and 
the GCM GFDL‑CM2.1 and (e) difference between NCEP and downscaled simulation. Results 
shown are for the period 1961‑1990.
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5.7 Ensemble simulations

Throughout this section, we have shown the capacity 
of the six‑model‑mean to simulate Tasmanian climate. 
Thus far, we have concentrated on the similarities 
between the six models. Here we examine the degree 
of variability between the independent 0.1‑degree 
downscaled models. 

The six downscaled models considered thus far have 
been driven by six independent GCMs (all using the 
A2 SRES emissions scenario). Each of these GCMs has 
different internal mechanisms driving the model. 
The different forcing from the GCMs maintains the 
variability of the GCMs and this variability, reflected 
particularly in their behaviour of sea surface 
temperatures (SST) and sea ice, is passed through into 
CCAM. For the evaluation process, these six models 
are called the six GCM ensemble. An alternative 
method for generating variability over the region 
is to use a single GCM simulation, multiple times, 
with different initial conditions. In Section 4.2.3, this 
group of simulations with a single GCM is called the 
three‑member ensemble.

Three independent simulations were undertaken, all 
using an identically configured version of CSIRO‑Mk3.5 
for the period 1871‑2100. Each simulation started 
with different, independent initial conditions. Each 
member of this ensemble was then downscaled 
through the 0.5‑degree model to the 0.1‑degree 
model. This three‑member ensemble produces a 
realistic 30‑year climate for Tasmania as illustrated 
by accurately producing the seasonal difference in 
Tmin and by the standard deviation of monthly mean 
Tmin for each season (Figure  5.35). The differences 
between Figure 5.35 and Figure 5.9 are small, despite 
this ensemble having half the number of members, 
all forced from the one GCM.

In each ensemble group, we had three (or six) 
independent simulations of the Tasmanian climate. 
The variability between them was assessed by 
considering each grid cell as follows: for a single 
variable at each time interval, we calculated the mean 
value of the variable using the three (or six) simulations 
of each climate variable. Then the anomalies of each 
member is computed from this mean. An estimate 
of the variation of the ensemble was the standard 
deviation of the set of anomaly values for every time 
interval. For example, the monthly mean maximum 
temperature (Tmax) of the three‑member ensemble 
for the period 1961‑1990,  contains 360 mean values 
(30 years by 12 months) by three (three anomalies 
from each mean), or 1080 values for each grid point, 
from which the means and standard deviations were 
calculated.

For each month in the time series, we calculated the 
ensemble‑mean for Tmax, and then the three (or 
six) anomalies from this mean. We considered the 
1080 (or 2160) Tmax anomaly values as a single set 
and calculated the standard deviation and mean 
of this set. The results of this calculation for Tmax 
for both the six‑member ensemble (Figure  5.36a 
and Figure  5.36b) and the three‑member ensemble 
(Figure 5.36c and Figure 5.36d) show the ensembles 
produce a very similar mean maximum temperature, 
but that the six‑member ensemble has slightly higher 
variability across most of the state. 

Repeating this calculation for monthly rainfall 
(Figure  5.37) and monthly maximum meridional 
(north‑south) wind (Figure  5.38) shows that the 
three‑member ensemble has slightly reduced 
variability in both of these variables compared 
with the six‑model‑mean. The variance around the 
six‑model‑mean is a measure of the uncertainty of 
the different GCMs to simulate the climate for the 
period (1961‑1990). This is also a component of the 
uncertainty in the future climate as well.

Notwithstanding the (unavoidable) difference in 
ensemble size (six different host GCMs, compared 
to three initialisations of CSIRO‑Mk3.5), this analysis 
suggests that the differences between downscaled 
host GCMs is larger than the differences due to 
internal variability of CSIRO‑Mk3.5 (as measured 
by the spread of the single model three‑member 
ensemble). We have shown that the spread in 
climate simulations due to model difference is more 
important than the spread in climate simulations 
due to model initialisation. That is we have shown 
that the between‑model differences are larger than 
initialisation differences.
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Figure 5.35	

Seasonal differences between AWAP and 
the three‑model ensemble‑mean for daily 
minimum temperature for the period 
1961‑1990. The variances are calculated 
using the monthly mean for each season. 
The bottom figure (m) shows the monthly 
statewide mean daily minimum temperature 
for each model (coloured) and for AWAP 
(black line).
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Three Member Ensemble – Temperature

Figure 5.36	Mean (left column) and variability (right column) of mean monthly daily maximum 
temperature in the six‑member ensemble (different GCMs) and three‑member ensemble for 
the period 1961‑1990.

Figure 5.37	Mean and variability of monthly rainfall in the six‑member ensemble and three‑member 
ensemble for the period 1961‑1990.
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Figure 5.38	Mean and variability of monthly maximum meridional wind in the six‑member‑ensemble and 
three‑member ensemble for the period 1961‑1990.
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5.8 High resolution (0.05‑degree) 
simulation

A high‑resolution 0.05‑degree simulation was 
undertaken using the CSIRO‑Mk3.5, A2 emissions 
scenario as the host GCM. As explained in Section 
3, there were two reasons for undertaking the 
0.05‑degree simulation:

1.	 to produce a simulation at the same resolution 
as the AWAP and SILO gridded data (both are 
published at 0.05‑degree), and 

2.	 to determine if the large bias in rainfall in the 
northern midlands region was created by 
topographic effects and therefore reduced by 
increasing resolution. 

The high‑resolution 0.05‑degree simulation gave 
an annual rainfall pattern broadly consistent with 
the 0.1‑degree model and with the AWAP data 
(Figure 5.39). This simulation showed a higher spatial 
variability that is consistent with the increased 
resolution. Notably the region inland of the west 
coast is wetter, as is the Ben Lomond region of 
the north‑east. Both of these regions have steep 
mountain ranges that are not well resolved in the 
0.1‑degree model.

Both the 0.1‑degree model and the 0.05‑degree 
model were spectrally nudged from the 0.5‑degree 
model using the surface pressure, temperature, 
atmospheric moisture and wind above 850 hPa. 

The exact location of a rainfall event is largely 
dependent on local orography, particularly in 
high‑resolution models. Figure  5.40 shows the 
temporal correlation of monthly rainfall between 
the 0.1‑degree and 0.05‑degree models. The high 
correlation in the north and west shows that this area 
is dominated by seasonal rainfall cycles. However, in 
the east the correlation is less, possibly demonstrating 
that orography, or atmospheric convection, is having 
a significant effect on how and when rainfall occurs 
in this region. 

The difference between the AWAP data and the 
six‑model‑mean rainfall on a seasonal and annual 
basis is displayed in Figure 5.41. The six‑model‑mean 
over‑estimated rain in the Tamar Valley and 
northern midlands regions as much as 100% and 
under‑estimated rainfall in other regions by around 
50%. Each of the models in the six‑model‑mean 
displayed this same pattern of rainfall when 
compared to the gridded AWAP data (Figure 5.12). 
These differences in rainfall improved when the 
0.05‑degree model is compared in the same manner 
against the AWAP data (Figure  5.41) and with little 
adverse effects elsewhere across the state. The 
over‑estimate of rainfall in the Tamar Valley/upper 
midlands region decreased from 100% to 50% in the 
0.05‑degree model, while in the mountainous regions 
in the west of the state the rainfall increased by close 
to 50% along ridgelines that were not resolved in 
the 0.1‑degree model. Rainfall in the Derwent Valley, 
over‑estimated in the 0.1‑degree model, is also 
improved in the 0.05‑degree simulation.

Figure 5.39	Annual rainfall for (a) the 0.1‑degree simulation (b) the 0.05‑degree simulation and (c) AWAP 
for the period 1961‑1990 (using CSIRO‑Mk3.5 as the host GCM).
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Screen temperature was also altered by the increase in 
model resolution. However, the impact of orography 
is weaker on temperature and was not as affected 
by the lower resolution of the 0.1‑degree model 
topography of Tasmania. The mean annual maximum 
temperature for the 0.05‑degree model was very 
similar to the 0.1‑degree model (Figure  5.42), and 
both were similar to the AWAP data (spatial correlation 
for both models is above 0.95). The 0.05‑degree 
simulation shows more spatial variability, consistent 
with the increased variability in orography of the 
higher resolution model. The temporal correlation 
between the two resolutions was exceptionally 
high, close to 0.99 across the state. Unlike rainfall, 
the changes in percentage difference between the 
AWAP data and the two models is relatively small and 
appear to coincide with the changes in orography 
(figures not shown).
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Figure 5.41	The annual percentage difference in 
total rainfall between AWAP and (a) 
the 0.05‑degree simulation (b) the 
0.1‑degree simulation for the period 
1961‑1990.
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Figure 5.40	Temporal correlation of monthly rainfall 
between the 0.1‑degree and 0.05‑degree 
simulations for the period 1961‑1990.
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Figure 5.42	Mean maximum daily temperature (°C) for (a) the 0.1‑degree model (b) the 0.05‑degree 
model and (c) AWAP, for the period 1961‑1990 (using CSIRO‑Mk3.5).

(a) Mean annual Tmax for 0.1 o model ( oC)

 

 

5

10

15

20
(b) Mean annual Tmax for 0.05 o model ( oC)

 

 

5

10

15

20
(c) Mean annual Tmax for AWAP ( oC)

 

 

5

10

15

20

 

 

5 10 15 20

Mean annual Tmax
0.1-degree simulation

Mean annual Tmax
0.05-degree simulation

Mean annual Tmax
AWAP

Annual difference 
0.05-degree and AWAP

(b)(a) (c)

(b)(a)

0.05-degree Simulation – Temperature

Correlation coefficient
of rainfall

°C

In summary, the increase in resolution has affected the 
distribution of rainfall across the state and improved 
the simulation when compared with rainfall calculated 
from the AWAP data. It does not have as large effect 
on the daily maximum temperature, except for regions 
where the increased resolution resulted in noticeable 
changes in altitude. This is consistent with our argument 
that differences between the six‑model‑mean and the 
AWAP data are largely due to the lower resolution 
topography in the downscaling of Tasmania. It is clear 
that in the Tasmanian region increased resolution 
of the topography yields even better simulations of 
rainfall and temperature. 
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6 Bias-adjustment

In the previous section, we demonstrated the skill 
of the Climate Futures for Tasmania simulations 
at reproducing the current climate. While the 
simulations displayed a high level of skill in most 
variables, at most locations, when compared to 
the AWAP data, there were some systematic biases. 
For reporting trends in the climate, and for most 
applications that require climate modelling output 
as input, the small biases in the projected climate 
simulations will not adversely affect the resulting 
projections. However, some applications exist, 
particularly in agriculture (Holz  et  al  2010) and 
hydrological modelling (Bennett  et  al  2010), that 
could result in biased estimates of future change. 
For example, an agricultural cropping model might 
‘know’ that a certain species of grass will dramatically 
reduce growth above 28 °C. If our climate simulations 
have a cold/warm bias in a certain region, so that 
temperatures are slightly over or under‑estimated, 
then a bias in estimates of the current rate of growth 
of grass is carried through when reporting on 
future changes to cropping in this region. For these 
applications, most dynamical downscaling climate 
simulations (including our project simulations) need 
to be bias-adjusted (Boe et al 2007; Wood et al 2004) 
so that the input for these models correctly simulates 
the current climate. 

Two types of error exist in the Climate Futures for 
Tasmania climate simulations (and all dynamical 
models): stochastic (random) error and systematic 
error. All models have some level of stochastic error 
(also called noise), two examples of such error in a 
climate model is a lack of numerical precision in the 
model and errors in the parameterisation of physical 
processes in the host GCMs. Our approach of using 
an ensemble of simulations allows us to make some 
estimate of the stochastic error. The use of the 
six‑model‑mean decreases the effects of these types 
of errors by averaging over the simulations and thus 
reducing the error from each host GCM. In contrast, a 
systematic error (or bias) is a consistent error which 
can be caused by, for example, the lack of resolution 
of the spatial grid in accurately simulating a physical 
process. For example, the 0.1‑degree model has 
grid cells that are roughly 10 km across. Within each 
grid cell all variables have a single value, thus the 
orography of the entire 10 km square grid cell is 
represented by a single height. If the area represented 
by this cell contains a mountain peak then the model 
may consistently under‑calculate the rain that falls in 
this cell.

Two methods are commonly used to account for 
any biases inherent in climate models. The first (and 
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most common) is to use an historically observed 
dataset for a given climate variable and add the 
average change in the variable between the current 
and future simulated climate. This method is 
straightforward to apply; for example, we may shift 
the daily maximum temperature reported in the 
simulations by a fixed amount, say 2.8  °C, to better 
match observed records. This ensures that future 
climate simulations behave in a similar way to the 
current climate, but bears the signature of climate 
change. A significant disadvantage of this method 
is that it restricts the changes that can take place in 
such things as seasonality, or changes to frequency 
of extreme weather events. The second method is to 
use a bias‑adjustment process to ensure the current 
model climate matches the observations over the 
entire probability distribution, and then apply this 
adjustment in each quantile of the probability 
distribution into the future period. This method is 
more complex, but has the benefit of preserving any 
changes to the distribution projected by the climate 
models. We have developed a bias‑adjustment 
process based on the second method.

In most previous studies where climate simulations 
have been used as input to  application models, such 
as stream flow models, an anomaly of perturbed 
historical datasets have been used (see for example 
the Sustainable Yields projects from CSIRO at 
www.csiro.au/partnerships/SYP.html). The decision 
by Climate Futures for Tasmania to directly use 
bias‑adjusted simulations is a significant step forward 
in this area of research. The results of the bias‑adjusted 
fields are reported in the Impacts on Agriculture 
Technical Report (Holz et al 2010) and the Water and 
Catchments Technical Report (Bennett et al 2010).

A bias in simulations is a consistent error and can be 
accounted for if the cause of the bias is understood, 
or if appropriate observations are available to allow 
for a comparison with modelling output. We have 
used a bias-adjustment process to correct for the 
systematic error in the 30‑year climate in five of the 
key variables in our simulations: daily maximum 
screen temperature (Tmaxscr), daily minimum screen 
temperature (Tminscr), total daily rainfall (rnd24), 
daily total pan evaporation (epan_ave) and daily 
total solar radiation (daily_rad). These five variables 
were chosen as they are key observational variables 
for many of the applications and processes that 
will be considered in the four technical reports that 
address water and catchments, general climate 
impacts, impacts on agriculture and extreme events 
(Bennett et al 2010; Grose et al 2010; Holz et al 2010; 
White et al 2010). 

Crucially, bias-adjustment can only be applied if 
reliable observational data is available, such as 
the AWAP data. Other variables were considered, 
including wind/pressure and soil moisture, but were 
excluded due to lack of available, reliable gridded 
observational data.

A further assumption in the bias-adjustment is that 
the cause of the biases is constant throughout the 
adjustment training period, and thus the required 
adjustments also remain constant. The bias is 
calculated by determining the offset between the 
observation and the simulation for each percentile 
over the training period 1961-2007. This bias is then 
assumed to be constant and the offset is applied over 
the entire simulation (for example, out to 2100). As 
discussed in Section 5, bias can be caused by a number 
of factors, including errors in modelled large‑scale 
climate drivers or poor resolution of orography. This 
section also showed that the mean values of the 
simulations (of the variables that could be compared) 
were very close to the mean values from the AWAP 
data. Section 5.8 showed how increasing the model 
resolution from 0.1‑degree to 0.05‑degree removed a 
substantial part of the difference between the AWAP 
data and the modelling output. These results support 
the assertion that a large part of the spatial bias seen 
in the simulations is caused by the limited resolution 
of topography across the state. Topography does 
not vary throughout the simulation period (that is, 
1961‑2100) and thus a significant portion of the bias 
is constant. 

Separate bias‑adjusted simulations were created for 
each of the 0.1‑degree simulations. Only output from 
the 0.1‑degree simulations was bias‑adjusted, as these 
simulations compare most closely with the available 
0.05‑degree AWAP data. The 0.5‑degree  simulations 
were not bias‑adjusted as these simulations were 
primarily produced as an intermediate step to 
allow downscaling to 0.1‑degree. In addition, the 
bias‑adjustment was applied only over Tasmania, 
and did not include the cells over water or mainland 
Australia.

The bias-adjusted simulations contained the five 
bias‑adjusted variables listed above, as well as a further 
ten raw (non‑bias‑adjusted or unadjusted) variables, 
included because of their relevance to processes that 
will be considered in the other technical reports. The 
full list of variables in the bias‑adjusted simulations is 
in Table 6.1.
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6.1 Bias‑adjustment method

Several different techniques for implementing 
bias‑adjustment exist. We employed a 
percentile‑binning method based on the work of 
Panofsky and Brier (1968) to adjust five key variables 
(Tmaxscr, Tminscr, rnd24, potential evaporation and 
solar radiation). This process has also been used 
by Reichle and Koster (2004), Deque (2007), and 
notably in dynamical downscaling applications 
by Boe  et  al  (2007) and Wood  et  al  (2004). The 
percentile‑binning method has an advantage over 
other bias‑adjustment methods, as it does not 
assume that the offset is constant for all values of the 
variable being adjusted or even that the distribution 
of the variable being adjusted is normally distributed 
about a mean.

The bias‑adjustment was carried out on a cell‑by‑cell 
basis for each of the land grid cells. The AWAP 
dataset does not have data for water cells and so 
no comparison (or adjustment) can be made in 
these regions. An important consideration when 

Observational variable (units) Variable name in 
simulation Adjusted or Raw

Maximum daily screen temperature (K) Tmaxscr Adjusted

Minimum daily screen temperature (K) Tminscr Adjusted

Total daily rainfall (mm) rnd24 Adjusted

Total daily potential evaporation (mm) epan_ave Adjusted

Total daily incident solar radiation (MJ/m2/day) daily_rad Adjusted

Low cloud fraction (%) cll Raw

Mid‑cloud fraction (%) clm Raw

Average daily evaporation (mm) evap Raw

Maximum daily precipitation rate in a time step (mm/day) maxrnd Raw

Mean sea level pressure (hPa) psl Raw

Maximum screen relative humidity (%) rhmaxscr Raw

Minimum screen relative humidity (%) rhminscr Raw

Zonal (east‑west) maximum 10 m wind speed (m/s) u10max Raw

Meridional (north‑south) maximum 10 m wind speed (m/s) v10max Raw

Soil moisture as a fraction of mass of top two levels (%) wbfshall Raw

Table 6.1	 The list of variables contained in the bias‑adjusted datasets, indicating those that have been 
adjusted. 

bias-adjusting modelling output is that the act of 
bias-adjusting can alter the physical relationships 
between different variables (the dynamical balance). 
Changes in dynamical balance can be caused when 
variables are adjusted independently of each other, 
as is the case here. 

Temperature often has an approximately normal 
distribution of values (Figure  6.1) and so a mean/
variance method of bias-adjustment may perform 
satisfactorily. The regions of the distribution where 
this is likely to break down are the extremes, both 
hot and cold. In contrast, daily rainfall is not normally 
distributed (Figure 6.2), with days of no-rain being 
common. For daily rainfall, a mean/variance method 
of bias-adjustment would be inappropriate. To 
maintain consistency in our approach, we used the 
percentile‑binning approach for the bias‑adjustment 
for all of the five climate variables.



section • 6

Temperature Distribution

Figure 6.1	 Plot of number of days having a given daily (a) maximum or (b) minimum temperature over 
a 30‑year period (1961‑1990) for six sites across Tasmania. Note, the approximately normal 
distribution of the data (using CSIRO‑Mk3.5 as the downscaled GCM).

Rainfall Distribution

Figure 6.2	

Plot of the number of days 
having a given total daily 
rainfall over a 30‑year 
period (1961‑1990) for 
six sites across Tasmania.  
This distribution is certainly 
not normal, showing 
something akin to a power 
law (using CSIRO‑Mk3.5 as 
the downscaled GCM).
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The bias-adjustment process can be broken into two 
stages. The first stage compares the distributions of 
the modelling output and the AWAP data over the 
period of time that both datasets exist, and calculates 
an adjustment factor for each percentile bin. The 
second stage applies this adjustment factor to each 
percentile bin over the full 140‑year period. Often the 
highest values of the modelling output are greater 
than the highest values of the observations. This 
does not cause problems with this method as every 
value in the top 1‑percentile bin (the 99th-percentile 
to 100th-percentile bin) is adjusted using the value 
calculated for this bin.

The overlap between the Climate Futures for Tasmania 
simulations and the AWAP data is from 01/01/1961 to 
31/12/2007; a period of 47 years or 17,155 days. This 
period forms the overlap period, where we calculate 
the adjustments made to each percentile bin. For 
each variable being adjusted both the model and the 
AWAP data for this period were first detrended using 
a linear regression to remove effects of any long‑term 
change in the climate (but not to remove the 47‑year 
mean of the modelling output). Each point in the 
time series was ranked and assigned to a percentile 
for each simulation. For temperature, the differences 
between matching bins were stored in a look‑up 
table, while for rainfall the ratios between respective 
bins were stored. The two different techniques reflect 
the fact that rainfall has a lower limit of 0 mm and 
the change in likelihood of a particular quantity of 
rain scales logarithmically, while temperature has no 
lower limit, and does not scale logarithmically.

The detrending of the simulations was necessary 
to ensure that any climate change signal did not 
affect the percentile rankings. The percentile 
approach seeks to group together events that were 
of similar likelihood in their epoch. For example, if 
there was an increase in mean temperature in the 
overlap period, then values from later years will be 
artificially more frequent in the upper percentiles 
of the Tmax distribution. A 50th‑percentile day in 
the decade 1961‑1970 should be grouped with a 
50th‑percentile day from the decade 1998‑2007. It 
is the relationship between climate drivers, inherent 
bias and the modelled variable that we are trying to 
correct, not the exact temperature. Detrending prior 
to bias‑adjustment is even more important in the 
simulations to 2100, as these have a mean increase in 
Tmax of approximately 3 °C.

We considered bins with percentile widths of 10 and 5, 
before deciding on a bin-width of 1-percentile. For the 
majority of the distribution, the difference between 
1‑percentile, 5‑percentile and 10‑percentile bins is 
small: the magnitude of the adjustments were less than 
2 °C. However, at the extremes of the distribution, when 
the low probability events occur, the difference became 
marked. When using 10‑percentile bins, the final 10% 
of the distribution undergoes a sizeable change of up 
to 6 °C (Figure 6.3). If instead we use 5‑percentile bins, 
then only the final 5% of each end of the distribution 
undergoes this large change (Figure 6.4). Finally, if we 
use 1‑percentile bins, then we can limit the range of 
the spectrum undergoing adjustments greater than 
2 °C to the final 1% (Figure 6.5).
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Figure 6.3	 The bias‑adjustments applied to daily maximum screen temperature for each of the 
10‑percentile bins for CSIRO‑Mk3.5, A2 emissions scenario.
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Figure 6.4	 The bias‑adjustments applied to Tmaxscr for the lowest three (a), (b), (c) and highest three 
(d), (e) and (f) 5‑percentile bins for CSIRO‑Mk3.5, A2 emissions scenario.
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Figure 6.5	 The bias‑adjustments applied to Tmaxscr for the lowest five (a) - (e) and highest five (f) - (j) 
1‑percentile bins for CSIRO‑Mk3.5, A2 emissions scenario.
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Given the importance of extreme events to the 
project and climate change studies in general, it 
was important to get the tail of the distributions as 
accurate as possible. Adjusting the top and bottom 
10% of each distribution as one group by up to 6 °C 
was too coarse to accurately model the extreme 
events in each variable, and thus in order to do a 
better estimate of the extremes of each distribution 
we used 1‑percentile bins for the adjustment process. 
In order to simplify calculations we use 1‑percentile 
bins for the entire distribution. For the majority of the 
range, the choice of bin size makes little difference, 
but at the tails of the distribution, the 1‑percentile 
bins behave quite differently from the 5-percentile 
and 10‑percentile bins, justifying our choice of bin 
size (Figure 6.6). Choosing a bin size of smaller than 
1% leads to problems with over‑correcting the 
simulations and having insufficient points in each bin 
to accurately calculate the adjustment. 

Once the bias‑adjustment for each percentile bin 
was calculated from the reference period it was then 
applied to the full 140‑year dataset. Note that having 
calculated the adjustment using the 47 years of the 
AWAP data and the first 47 years of the simulation, 
the 140 years (including the 47‑year overlap period) 
was treated as a single dataset. The adjustments were 
applied to the simulation using percentiles based on 
the distribution from the entire 140‑year period. The 

Figure 6.6	 The statewide mean bias‑adjustment of daily maximum screen temperature for the 
downscaled CSIRO‑Mk3.5 simulation (A2 emissions scenario) when using 1‑percentile 
(black), 5‑percentile (red), 10th‑percentile (blue) and 20th‑percentile (green) bins.

result of this decision is that the modelling output 
from the first 47 years is not constrained to be exactly 
like the AWAP data and include the underlying trends 
on the projections during the overlap period. This 
allows comparisons in the reference period between 
the AWAP data and the simulations to provide a check 
on the effectiveness of the adjustment process.

The adjustments were applied to the time series in 
the simulations by assigning each modelled daily 
value to its percentile and then adding (or multiplying 
for rainfall) the adjustment according to the 47‑year 
overlap period. For temperature, we expect a strong 
trend in the simulations, and thus it is necessary to 
remove this trend (the climate change signal) before 
calculating the percentiles in order to prevent an 
unrealistic proportion of the high percentile days 
occurring later in the modelling period. This was 
done by calculating a 30‑year running mean for each 
of the 140 years of modelling output in the time 
series, and removing this value from each one‑year 
block of modelling output. For simplicity, we applied 
the same detrending process to the rainfall. This was 
done by calculating a 30-year running mean for each 
of the 140 years of modelling output in the time series. 
Each day was ranked and the appropriate percentile 
assigned using this de-trended time series, however 
the corresponding adjustment was carried out on the 
original time series (with the trend included).

Mean Adjustment with Different Bin Sizes
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The final stage of the process was to choose whether 
to apply the adjustment annually, seasonally, 
monthly or to some other time period. If we calculate 
the adjustment annually, then we include all 47 by 
365 days of output in the overlap period, and 140 
by 365 days of modelling output in the full period. 
With this method, summer days are far more likely 
to occur at the top of the distribution than winter 
days, and autumn and spring days are likely to 
occur in the middle of the distribution. This method 
was unsatisfactory as it resulted in a process where 
unusually hot winter days were treated similarly to 
cold or average summer days. Maximum temperature 
of above 20  °C on a winter day may not be driven 
by the same climate drivers as a summer day of the 
same maximum temperature, and thus should not be 
adjusted the same way. Further, autumn and spring 
days almost all fell in the middle of the distribution.

Alternatively we could choose to calculate the 
adjustment on a monthly, or even weekly basis. For 
either of these options, the problems described above 
should not be an issue, but other problems arise. 
Firstly, there are far fewer days available for calculating 
the adjustments. For the adjustment process to 
be effective, we needed the full range of possible 
values of each variable to occur in the calculation 
period. This would certainly be an issue if using a 
weekly adjustment period. The second issue is the 
number of boundaries between adjustment periods. 
When using monthly adjustment periods there are 
twelve boundaries each year (when the calculated 
adjustments change from one period to another). 
The more adjustment boundaries the greater the 
likelihood of having artificial discontinuities occurring 
in the simulation time series. 

Adjusting seasonally solves these problems and 
becomes a safe middle ground between annual and 
monthly time periods. Using the current seasons 
should ensure that days of similar temperature (or 
rainfall, radiation et cetera) are driven by the same 
processes. A limitation of seasonal adjustment 
is that it assumes that the different behaviour of 
the climate in the different seasons is constant 
in a changed climate. Changes in the timing and 
frequency of events (particularly rainfall) are a key 
component of the project and this may be affected 
by the adjustments on a seasonal basis. With seasonal 
adjustment periods we also limit the number of 
boundaries to only four per year, and ensure that we 
have at least 47 by 90 days to use in the estimating of 
the adjustments for each season.

As seasonality, and importantly change in seasonality, is 
a key component of the project, it is desirable to resolve 
the seasons and their corresponding bias-adjustment. 
We investigated the effects of bias‑adjustment on a 
seasonal, monthly and annual basis. This investigation 
confirmed that seasonal adjustments gave good 
results in terms of the issues described above.

Applying the adjustments on a seasonal basis 
involves running the adjustment process four times 
for each simulation and thus considers 47 summers, 
47 autumns et cetera from the 1961‑2007 overlap 
period. Applying the adjustments on any interval 
less than annual results in a discontinuity between 
the seasons, that is a day where 50 mm of rain 
fell in late February (the end of summer) will be 
treated differently from a day with the same rain 
in early March. This situation is unavoidable and 
the problem potentially increases with increasing 
number of sub‑annual divisions. By choosing 
seasonal adjustments, we have struck a balance 
between the number of boundaries and accuracy 
of the adjustments. Adjusting on a monthly basis 
is also possible, but this would have resulted in far 
fewer values to provide a robust estimate of the 
correction function and three times more boundaries 
to potentially cause subtle discontinuities in the 
adjusted simulations.

The process as outlined above uses the entire 
observational period to calculate the adjustments. 
This maximised the overlap period for calculating 
the adjustments, however it does not leave 
any observational data that has not been used 
in the adjustment process for checking the 
similarity between the adjusted simulation and 
observational data. In order to give confidence in the 
bias‑adjustment process, we ran the bias‑adjustment 
process once using the years 1971‑2007 as the overlap 
period, holding back the period 1961‑1970. We then 
compared the bias‑adjusted modelling output to the 
AWAP data for the ‘held‑back’ decade. The results of 
this analysis can be seen in Section 6.2, specifically 
Figure 6.15 and Figure 6.16. Further validation of the 
bias‑adjustment process is included in the Water and 
Catchments Technical Report (Bennett et al 2010).

6.2 Bias‑adjustment sample results
The results presented in this subsection illustrate 
the bias‑adjustment process just described. As the 
bias‑adjustment process operates in the same manner 
on each model, we have chosen to demonstrate the 
results for each variable from a single model (but 
change the model displayed with each variable). 
Further validation of the bias‑adjustment of the 
project modelling output can be seen in the Impacts 
on Agricultural Technical Report (Holz  et  al  2010) 
and the Water and Catchments Technical Report 
(Bennett  et  al  2010). It is important to note that 
we are not seeking to validate the concept of 
bias‑adjustment in this report. We are demonstrating 
a method to correct small errors and bias in the 
simulation that can be corrected (when compared 
to gridded observations) and apply this correction 
for the entire simulation from 1961 to 2100. We 
also demonstrate that the bias‑adjustment process 
presented in this report does correct deficiencies in 
the model (against the gridded observations).

The bias‑adjustment process changes the histogram 



of rainfall for the recent past, where the AWAP 
data is available for comparison, and in the future 
(see Figure  6.7). On the west coast, at Strahan, the 
0.1‑degree downscaled model of GFDL‑CM2.1 
over‑estimated the rainfall compared to the AWAP 
data (Figure 6.7a), and at Hobart (in the south‑east) 
the model under‑estimated it (Figure  6.7c). The 
bias-adjustment process correctly changed the 
distributions to match more closely the AWAP data. 
For the period from 2070 to 2099, the shape of the 
histogram changed for both sites, but the change 
seen to the adjusted simulations is consistent with 
that from the recent past. This gives us confidence 
that the bias‑adjusted simulations for the future 
period more accurately model the likely future 
rainfall, that is, the bias‑adjustment process remains 
valid into the future. All of the subsequent figures 
featuring rainfall are produced using the downscaled 
0.1‑degree model with the GFDL‑CM2.1, A2 emissions 
scenario GCM as host.

The capacity of the bias‑adjustment process to correct 
the spatial pattern of the model to match more 
closely the AWAP data for rainfall is demonstrated in 
Figure  6.8 through to Figure  6.12, and summarised 
in Table 6.2. For each of the four seasons, as well as 
annually, the bias‑adjustment process removed the 
observed seasonal biases in rainfall of up to 50% 
in some areas. The spatial correlation between the 

Figure 6.7	 Histogram of daily rainfall for Strahan for (a) the recent past (1961‑1990) and (b) the end of 
the century (2070‑2099), and Hobart for the same periods (c) and (d). The figures show the 
values for AWAP data (green line) as well as unadjusted (blue line) and bias‑adjusted (red 
line) simulations for the recent past, and unadjusted and bias‑adjusted simulations for the 
future. The modelling output is for the downscaled GCM GFDL‑CM2.1, A2 scenario simulation.

model and the AWAP data increases from between 
0.8 and 0.87 for unadjusted modelling output, to 
0.99 when using bias‑adjusted modelling output. 
Recall that the 47 years of modelling output in the 
overlap period between the simulation and the 
AWAP data were adjusted as part of the 140‑year 
adjustment process and thus are not constrained to 
behave exactly like the AWAP data. This is different 
to adjusting the 47 years of modelling output using 
only the 47-year period. In this case, the adjusted 
simulation is forced to look exactly like the AWAP 
data. By treating the initial 47 years as part of the 
140‑year whole, we can compare the 47-year period 
to the AWAP data to check the effectiveness of the 
adjustment process.

The very strong temporal correlation that exists 
between the unadjusted and adjusted simulations 
on a daily basis, both in the recent past and 
period 2070‑2099 (Figure  6.13), shows that the 
bias‑adjustment process is having a consistent effect. 
This indicates that the bias‑adjustment process is not 
significantly changing the daily values or variance 
at each cell, that is the hot days remain hot, the cold 
days remain cold, et cetera. Anything less than a high 
correlation between the unadjusted and adjusted 
simulations would be a cause for concern.
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Figure 6.8	 The result of the bias‑adjustment process for rainfall (mm) for summer for the reference period 
(1961‑2007); (a) AWAP summer rainfall (b) unadjusted summer rainfall for the downscaled 
GFDL‑CM2.1 (A2 emissions scenario) simulation (c) percentage difference between AWAP 
and the unadjusted simulation for summer rainfall and (d) percentage difference between 
AWAP and the adjusted simulation for summer rainfall.
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Figure 6.10	The result of the bias-adjustment process for rainfall for winter for the reference period 
(1961‑2007): (a) AWAP winter rainfall (b) unadjusted winter rainfall for the downscaled 
GFDL‑CM2.1 (A2 emissions scenario) simulation (c) percentage difference between AWAP and 
the unadjusted simulation for winter rainfall and (d) percentage difference between AWAP and 
the adjusted simulation for winter rainfall.
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Figure 6.9	 The result of the bias-adjustment process for rainfall for autumn for the reference period 
(1961-2007): (a) AWAP autumn rainfall (b) unadjusted autumn rainfall for the downscaled 
GFDL-CM2.1 (A2 emissions scenario) simulation (c) percentage difference between AWAP 
and the unadjusted simulation for autumn rainfall and (d) percentage difference between 
AWAP and the adjusted simulation for autumn rainfall.
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Figure 6.11	The result of the biasadjustment process for rainfall (mm) for spring for the reference period 
(1961-2007): (a) AWAP spring rainfall (b) unadjusted spring rainfall for the downscaled 
GFDL-CM2.1 (A2 emissions scenario) simulation (c) percentage difference between AWAP 
and the unadjusted simulation for spring rainfall and (d) percentage difference between 
AWAP and the adjusted simulation for spring rainfall.
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Figure 6.12	The result of the biasadjustment process for annual rainfall (mm) for the reference period 
(1961-2007); (a) AWAP annual rainfall (b) unadjusted annual rainfall for the downscaled 
GFDL-CM2.1 (A2 emissions scenario) simulation (c) percentage difference between AWAP 
and the unadjusted simulation for annual rainfall and (d) percentage difference between 
AWAP and the adjusted simulation for annual rainfall.
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Figure 6.13	 The cellwise temporal correlation (calculated on a daily basis) of rainfall between the 
unadjusted and adjusted simulations for the (a) recent past (1961-1990) and (b) future 
period (2071-2100). This figure shows the result for the downscaled GCM GFDL-CM2.1, 
A2 emissions scenario.
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In the interests of brevity, we only include the annual 
results for the remaining bias‑adjusted variables. The 
unadjusted modelling output for daily maximum 
temperature (Tmax) is more closely correlated to 
the AWAP data than is the simulated rainfall. When 
using the 0.1‑degree downscaled GFDL‑CM2.0, 
A2 emissions scenario simulation, the spatial 
correlation between the unadjusted model Tmax and 
the AWAP data is 0.944. Nonetheless, the adjusted 
simulations are still significantly better (Figure 6.14). 
The spatial correlation between the AWAP data and 
the adjusted six‑model‑mean output is 0.999. 

For the rainfall and daily maximum screen 
temperature presented so far, we have relied on using 
the 47‑year overlap period to check the effectiveness 
of the adjustment process. An alternative approach is 
to calculate the adjustment using only a part of the 
period where observations exist, and hold back the 
remaining years where observations exist to evaluate 
the process. We used the shorter period 1971‑2007 
to calculate the adjustment, applied it over the entire 
140 year simulation and then examined the different 
values of Tmax (from the AWAP data, unadjusted 

Table 6.2	 Spatial correlations for rainfall between the AWAP data, the raw simulation and the 
bias‑adjusted simulation. The simulation used is the 0.1‑degree downscaled GFDL‑CM2.1, 
A2 emissions scenario.

AWAP – raw model AWAP – adjusted model

Summer 0.801 0.998

Autumn 0.871 0.998

Winter 0.872 0.999

Spring 0.857 0.999

Annual 0.862 0.999

and adjusted simulations) for the ‘held‑back’ 
period between 1961 and 1970 period. The figure 
corresponding to Figure  6.14 was virtually identical 
(and is not included in this report). As expected, the 
temporal correlation between the unadjusted and 
adjusted simulation when calculated on a monthly 
basis is close to 1.0 over the entire state (Figure 6.15a). 
Just as importantly, the correlation between the 
adjusted simulation and the AWAP data is slightly 
higher than that between the unadjusted simulation 
and the AWAP data (Figure  6.15b and Figure  6.15c) 
and Figure 6.16, which shows the difference between 
Figure 6.15a and Figure 6.15c. 

These results demonstrate that the bias-adjustment 
process works. When a decade in the overlap 
period (1961 to 2007) is not used in the adjustment 
calculations, the adjustments applied to the omitted 
decade remove the bias from the unadjusted model 
(not shown). Not only that but the adjustment 
process increases the temporal correlation between 
the AWAP data and the adjusted dataset, while 
maintaining a very high correlation between the 
unadjusted and adjusted simulations.
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Figure 6.14	Effects of the bias-adjustment process for mean daily maximum screen temperature for the 
reference period 1961‑2007; (a) the AWAP temperature (b) unadjusted temperature for the 
downscaled GFDL‑CM2.0 (A2 emissions scenario) simulation (c) the percentage difference 
between the unadjusted simulation and the AWAP data and (d) percentage difference 
between AWAP and the adjusted simulation.
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Figure 6.15	The temporal correlation of daily maximum temperature, calculated on a monthly basis, 
for the period 1961‑1970 when this period was held‑back from the adjustment calculation 
process. Correlation between (a) between the adjusted simulation and the AWAP data (b) 
the adjusted and unadjusted simulations and (c) between the AWAP data and the unadjusted 
simulation. This figure shows the result for the downscaled GCM GFDL‑CM2.0, A2 emissions 
scenario.
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Figure 6.16	The difference between Figure 6.15a and 
Figure 6.15c.
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The magnitude of the biases in minimum daily 
temperature is similar to that for maximum daily 
temperature. However, a significant warm bias 
existed in the central east region of Tasmania for 
daily minimum temperature (Tmin) in the 0.1‑degree 
downscaled ECHAM5/MPI‑OM, A2 emissions scenario 
simulation (Figure 6.17). Once again, the adjustment 
process removed this bias from the simulation 
(Figure 6.17d). The spatial correlations for Tmin for the 
downscaled ECHAM5/MPI‑OM are: AWAP data versus 
unadjusted simulation, 0.903; AWAP data versus 
adjusted simulation, 0.999; and adjusted simulation 
versus unadjusted simulation, 0.904.

The bias‑adjustment process for solar radiation and 
potential evaporation was identical to that carried 
out for rainfall (see Figure 6.18 for solar radiation and 
6.19 for potential evaporation). A simpler method 
of bias‑adjustment using monthly mean values of 
each variable was considered, but rejected because 
it was not as effective at correcting the bias while 
maintaining the character of low frequency events.

The major distinction between the AWAP data solar 
radiation and the unadjusted modelling output is 
that the simulations under‑estimated the radiation in 
the west and over‑estimated it in the east. Figure 6.18 
shows the pattern for the downscaled ECHAM5/
MPI‑OM simulation for the A2 emissions scenario, but 
the pattern is consistent across all models. Incident 
solar radiation is related to cloud cover and thus the 
model seems to be over‑estimating the cloud cover 
in the west of the state and under‑estimating it in the 
east. Figure 6.12 showed that the unadjusted model 
slightly under‑estimated the rainfall in the west of 
the state, and was mixed in the east. Rainfall and 
cloud cover are correlated, so an under‑estimation 
of rainfall in the west and over‑estimation of cloud 

cover is not necessarily consistent. The unadjusted 
model is dynamically consistent and this leads us to 
question the quality of the AWAP data in representing 
solar radiation. In spite of these questions, the AWAP 
data still provides one of the best datasets for solar 
radiation in Tasmania, and thus the bias‑adjustment 
has been carried out using the AWAP data. 
Furthermore, we have reduced the spatial difference 
between the model and the AWAP data to near 
negligible levels (Figure  6.18d). In fact, the spatial 
correlation is 0.999, whereas the correlation between 
the unadjusted model and the AWAP data is 0.889. 
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Figure 6.17	Effects of the bias-adjustment process for mean daily minimum screen temperature for the 
reference period 1961‑2007; (a) the AWAP temperature (b) unadjusted temperature for 
the downscaled ECHAM5/MPI-OM (A2 emissions scenario) simulation (c) the percentage 
difference between the unadjusted simulation and the AWAP data and (d) percentage 
difference between AWAP and the adjusted simulation.
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Figure 6.19	The bias‑adjustment process applied to potential evaporation (mm); (a) the total annual 
evaporation from AWAP for the reference period 1961‑2007, (b) the same for the unadjusted 
simulation, (c) the difference between AWAP and the unadjusted simulation and (d) the 
difference between AWAP and the adjusted simulation. This figure shows the result for the 
downscaled GCM MIROC3.2(med res), A2 emissions scenario.

 

 

−25 −20 −15 −10 −5 0 5 10 15 20 25

Figure 6.18	The bias-adjustment process applied to annual solar radiation; (a) the mean annual incident 
solar radiation from AWAP for the reference period 1961‑2007, (b) the same for the 
unadjusted simulation, (c) the difference between AWAP and the unadjusted simulation and 
(d) the difference between AWAP and the adjusted simulation. This figure shows the result 
for the downscaled GCM ECHAM5/MPI‑OM, A2 emissions scenario.
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As with solar radiation, the potential evaporation 
from the models appears to be more finely detailed 
over the state, showing greater variation due to 
topography than is present in the AWAP data 
(Figure  6.19 compares potential evaporation for 
the downscaled MIROC3.2(medres) simulations for 
the A2 emissions scenario and the AWAP data). The 
unadjusted simulation is within 20% of the AWAP 
data, but the adjusted simulation aligns almost exactly 
(Figure  6.19d) with the AWAP data. Note that like 
solar radiation there is a strong east‑west delineation 
in the AWAP data, with the east displaying higher 
annual solar radiation than the west. This pattern 
is reproduced to a lesser extent in the unadjusted 
simulations.

We have outlined the method used for the 
bias‑adjustment process in the project and results that 
start to demonstrate the effectiveness and validity 
of the method developed. We have demonstrated 
that the adjustment process can effectively match 
the simulations to the AWAP data on a seasonal and 
annual basis for the reference period 1961‑2007, 
while improving the temporal correlation between 
the simulations and AWAP data on a monthly basis. 
These results demonstrate that the adjustment ties 
the current climate (1961‑2007) to observations 
(the AWAP data) and projected climate simulations 
to realistic values. We have also shown that the 
adjustment process does not strongly affect the 
daily variability of the modelling output through the 
very high correlation between the unadjusted and 
adjusted simulations. In order to fully validate our 
method, we need to use the bias‑adjusted simulations 
in applications such as biophysical and hydrological 
models, and show that the adjusted simulations not 
only give realistic results but also more robust results 
than can be obtained when using the unadjusted 
simulations. This validation process was carried 
out in the analysis for the water and catchments, 
and impacts on agriculture technical reports 
(Bennett  et  al  2010; Holz  et  al  2010). These reports 
include further discussion on the bias‑adjustment 
method, and how it relates to their specific areas.



Climate Futures for Tasmania has undertaken an 
extensive climate modelling program in order to 
deliver high quality projections of Tasmanian climate 
to 2100. The end products include 17 simulations of 
the climate of Tasmania at a resolution of 0.1‑degree 
(about  10 km) or better. These simulations were 
all downscaled from global climate models of the 
kind used in the IPCC Fourth Assessment Report 
(IPCC 2007). The simulations contain more than 
140 variables recorded every six hours, and provide 
estimates of the Tasmanian climate for both the 
recent past (1961‑2007) and the future (2010‑2100). 
For some variables, such as temperature and rainfall, 
modelling output is available every three hours. The 
suite of simulations took approximately 1300 days of 
continuous computer time on a 0.82 teraflop machine 
and required in excess of 75 Terabytes of storage. 

To achieve a final resolution of 0.1‑degree (about 
10 km) we undertook a two‑stage dynamical 
downscaling process using CSIRO’s Conformal Cubic 
Atmospheric Model (CCAM). The two‑stage process 
used sea surface temperature from six global climate 
models (each with two IPCC emissions scenarios) 
to create intermediate resolution (0.5‑degree, 
or 60 km) simulations over Australia. These 
intermediate‑resolution simulations were then used 
as input for the high‑resolution simulations over 
Tasmania.

Downscaling six GCMs for two emissions scenarios 
allowed for a more robust estimate of the climate 
change signature by examining the ensemble mean 
of key variables (such as temperature and rainfall) 
as well as an estimate of the uncertainty in these 
estimates through the spread of the models. We used 
six GCMs to produce fine‑scale climate projections 
over Tasmania. These six GCMs (ECHAM5/MPI‑OM, 
GFDL‑CM2.0, GFDL‑CM2.1, MIROC3.2(medres), 
CSIRO‑Mk3.5 and UKMO‑HadCM3) were chosen for 
their capacity to simulate present day climate means 
and variability of south‑east Australia using a range 
of metrics.

The future global emissions profile is unknown. In 
order to provide projections for a range of likely 
futures, we chose to downscale each GCM using two 
SRES emissions scenarios, one high (A2) and one low 
(B1). This decision not only allowed us to report on 
the spread of each key variable under two different 
climate futures, but provided increased confidence in 
the results (where the two emissions scenarios agree) 
and a better estimate of the variability and sensitivity 
of those results.

7 Synthesis
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The climate models are not perfect. They do not 
(and cannot) capture every aspect of the climate of 
Tasmania. However, climate models can reproduce 
many aspects of climate, and as such are a vital tool 
for assessing potential changes in the future climate. 
Section 5 discussed the high level of skill that the 
downscaled models have in reproducing the recent 
climate of Tasmania across a range of climate variables. 
For the period 1961‑1990 the six‑model‑mean 
statewide daily maximum temperature calculated 
from the Climate Futures for Tasmania simulations is 
within 0.1 °C of the Bureau of Meteorology observed 
value of 10.4  °C, while the annual total rainfall of 
1385 mm is very close to the observed value of 
1390 mm. Furthermore, temperature has a spatial 
correlation of 0.93 with gridded observations over 
the state, while for rainfall the correlation is 0.63. 

This skill of capturing the climate of the recent past 
gives us confidence that the models are able to 
provide realistic projections of the Tasmanian climate 
to 2100. The ability to accurately simulate present 
climate is a preferable, but not wholly sufficient, 
condition for a good projection of climate change.

Global and regional climate models provide the 
best estimates for assessing potential changes to 
our climate over the coming century. However, 
climate models cannot provide all the information 
that is needed regarding climate change. In many 

situations, conceptual models, such as agricultural or 
hydrological models, are essential to model changes 
to specific operational information (such as changes 
to crop yields or river flows). All climate models contain 
biases. For reporting climate trends, these biases may 
not affect the output. However, conceptual models 
often contain non‑linearities that mean the climate 
simulations used as input into these models must 
be aligned with current climate. In order to use the 
Climate Futures for Tasmania simulations as input 
into conceptual models we created bias‑adjusted 
simulations for each downscaled simulation using 
the AWAP data as a gridded observational dataset. 
The Impacts on Agriculture Technical Technical 
Report (Holz et al 2010) and Water and Catchments 
Technical Report (Bennett et al 2010) give examples 
of these models.

The bias‑adjustment process was applied to five 
variables: daily maximum temperature, daily 
minimum temperature, daily rainfall, mean solar 
radiation and daily evaporation. The bias‑adjusted 
variables have been modified on a cell‑by‑cell basis 
using a percentile‑binning technique so that the 
shape of the probability distribution function of 
the modelling output from the recent past matches 
the current climate in terms of absolute value and 
seasonal range. For both temperature and rainfall, the 
spatial correlation of the bias‑adjusted simulations 
was above 0.99.
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