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Australia’s Wine Future — A Climate Atlas

Disclaimer

The material in this atlas is based on computer modelling projections for climate change sce-
narios and, as such, there are inherent uncertainties in the data. While every effort has been
made to ensure the material in this atlas is accurate, Wine Australia and the University of
Tasmania provide no warranty, guarantee or representation that the material will prove to
be accurate, complete, up-to-date, non-infringing or fit for purpose. The use of the material
is entirely at the risk of the user. The user must independently verify the suitability of the
material for their own use.

To the maximum extent permitted by law, Wine Australia and the University of Tasmania,
any other participating organisation and their officers, employees, contractors and agents ex-
clude liability for any loss, damage, costs or expenses whether direct, indirect, consequential
including loss of profits, opportunity and third party claims that may be caused through the use
of, reliance upon, or interpretation of the material in this atlas.
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Australia’s Wine Future — A Climate Atlas

Foreword

My interest in viticultural climatology goes back to the late 1970s when Richard Smart and
I published a climatic classification of Australian wine regions by means of novel indices of
temperature, rainfall, aridity, sunshine hours and relative humidity. This was the first time
that this had been done in Australia and our aim was to aid vineyard site selection and to
provide guidelines for varietal selection, at a time of major change in the Australian wine
industry. In hindsight, our methods were relatively simplistic, but they did provide a good
platform for inter-regional comparison and a better basis for the discussion of the impact of
climate on wine style and quality.

Therefore, I was delighted to learn that a team of well-credentialed climate scientists from
the University of Tasmania had been engaged to produce a climate atlas of Australian wine
regions. This method of presentation of climatic information is well overdue and will prove
to be a most valuable resource. The graphical presentation of climatic indices in a true at-
las format allows for easy interpretation, while the details to describe the methodology and
approaches that underpin the climate modelling, scenarios development and data analysis are
there for those who are technically inclined.

The first part of the atlas is a comparison of the current period (1997 to 2017) with the base
period (1961 to 1990). The authors have utilised well known climatic indices, such as Growing
Season Temperature, rainfall and aridity, which clearly demonstrate the significant changes
that have taken place in all regions over the past few decades. They have also created some
novel indices, designed to better represent the physiological requirements of grapevines over
the entire year. By doing so they have been able to capture the influence of heat units, for
example, at the beginning of the season on the timing of key phenological events (as we are
well aware, we have observed the earlier occurence of budburst and flowering in many regions
over the past 20 years). Also, Non-Growing Season Rainfall change since the base period
clearly shows the influence of the drying trend in most regions.

The second part of the atlas presents the projected climate across all Australian wine re-
gions out to 2100. This includes detailed presentations for each individual wine region (or
Geographic Indication), grouped for each State (WA, SA, NSW, Vic., Tas. and QLD). The
evidence is clear. The industry faces many challenges in the future, not only in terms of
diminished productivity and declining wine quality in a warming and drying climate but also
in terms of increased likelihood of risk of heat stress of vineyard workers.

Congratulations to the authors and to Wine Australia on the production of this seminal work.

Dr Peter Dry AM
Adjunct Associate Professor, University of Adelaide
Emeritus Fellow, The Australian Wine Research Institute
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Australia’s Wine Future — A Climate Atlas GLOSSARY

AGCD Australian Gridded Climate Data

AI Aridity Index

AWAP Australian Water Availability Project

BoM The Australian Bureau of Meteorology

BARRA The Australian Bureau of Meteorology Atmospheric high-resolution
Regional Reanalysis for Australia

CCAM CSIRO’s Conformal Cubic Atmospheric Model

CFAP2019 Climate Futures Australasian Projections 2019

CFT Climate Futures for Tasmania

CMIP Coupled Model Intercomparison Project
- Has three most common variations CMIP3 and followed by

CMIP5 and the current CMIP6, which indicate the experimental
configuration of the intercomparisons

CORDEX Coordinated Regional Downscaling Experiment

CSIRO Commonwealth Scientific and Industrial Research Organisation

EHF Excess Heat Factor

Ensemble member The output from one CCAM simulation driven by one of the six
global models

ENSO El Niño-Southern Oscillation

ERA European Centre for Medium-Range Weather Forecasts re-analysis

GCM Global Climate Model

GDD Growing Degree Days

GI Geographic Indication

GSR Growing Season Rainfall

GST Growing Season Temperature

IOD Indian Ocean Dipole

IPCC Intergovernmental Panel on Climate Change

IPCC-AR5 Intergovernmental Panel on Climate Change Fifth Assessment Re-
port

MOST Monin-Obukhov Similarity Theory

NRM National Resource Management

PDO Pacific Decadal Oscillation

RCM Regional Climate Model

RCP Representative Concentration Pathway
- Comes in the flavours RCP2.6 (best case), RCP4.5, RCP6.5 and

RCP8.5 (worst case, business as usual)

SAM Southern Annular Mode

SRES Special Report on Emissions Scenarios

SST Sea Surface Temperature

UHI Urban Heat Island

UTas University of Tasmania

WCRP World Climate Research Programme
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Australia’s Wine Future — A Climate Atlas INTRODUCTION

Introduction

Over the last century, Australia’s climate has warmed by 1°C, and few regions have been
unaffected (CSIRO and Bureau of Meteorology, 2018). Hotter average temperatures, hot-
ter summers, longer heatwaves, more frequent bushfires and changes to rainfall intensity and
seasonality have already had impacts across the country, and these trends are expected to
continue. Rapid and ongoing climate change has the potential to affect all aspects of the wine
industry, including vineyard performance, pest and disease incidence, wine quality and market
competitiveness. In recognition of these challenges, Wine Australia funded a collaborative re-
search project to consider the impact of climate variability and longer-term trends in climate
on the wine industry.

Australia’s wine future (2016–2019) was a collaborative research project that brought to-
gether researchers from a range of disciplines, including climate scientists, viticulturalists and
adaptation specialists. The project was led by the Antarctic Climate Ecosystems Cooper-
ative Research Centre (ACE CRC, University of Tasmania) in partnership with the South
Australian Research and Development Institute (SARDI), the Australian Wine Research In-
stitute (AWRI), CSIRO Marine and Atmospheric Research and the Tasmanian Institute of
Agriculture (TIA).

The Australian wine sector is likely to face challenges as the climate continues to warm, but,
in general, grape growers are experienced in responding to short-term climate surprises. In
the short- to medium-term, adaptation approaches may be learnt from the regions that are
currently experiencing the climate conditions that Australia is predicted to see in the fu-
ture. Fine-scaled climate information tailored for particular sector applications is vital for
identifying such adaptation needs.

Australia’s wine future generated the finest available climate projections for South-eastern
Australia and provided detailed information about how the climate may change in the near,
mid and long-term time horizons. In addition to providing climate information, the project
focused on how climate information can be used to inform adaptation decisions and iden-
tify lessons that might be transferable across regions already managing a range of climate
challenges.

The main legacy of the project is this atlas of climate information for all Australian wine
regions, providing information to grape growers and wine makers about climate trends for the
near, mid- and long-term horizons. The atlas showcases the most up-to-date climate infor-
mation at the finest resolution available in Australia, based on the CSIRO’s Conformal Cubic
Atmospheric Model (CCAM). Viticultural indices are presented that describe temperature,
heat accumulation, heatwaves, rainfall, and moisture indices. Future trends in mean climate
conditions, variability and extremes are visualised with reference to the current and histori-
cal climate. High resolution maps and time series for each region are presented to show the
projected change in climate indices over time, highlighting the variability within and across
the wine regions of Australia. The new atlas will help to answer the question – What will
my region’s climate look like in the future? This is essential knowledge for making good
management decisions and supporting strategic decisions over the longer term such as chang-
ing varieties or vineyard sites both within and between regions. The atlas is an important
resource that will help the wine industry understand how climate change could affect grape
yield, profitability and wine styles across Australia into the future.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

Wine Australia Geographical Indications

Figure 1: Spatial representation of the Australian wine regions used within this atlas. For mainland Australia these are the Wine Australia Geographical Indications (GI).
The Tasmania GI was divided into 8 regions based on Australian Bureau of Meteorology forecast districts, in recognition of the different climatic zones across
the state.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 2: Observed mean Growing Season Temperature (Oct–Apr) across all growing years from 1997–2017.

16

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE



Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 3: The change in Growing Season Temperature between the current (1997–2017) and historical (1961–1990) periods. Growing Season Temperature has increased
across the region over recent decades.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 4: Observed mean Growing Season Rainfall (Oct–Apr) across all growing years from 1997–2017.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 5: Change in Growing Season Rainfall (Oct–Apr) between the current (1997–2017) and historical (1961–1990) periods. Negative values indicate a trend towards
drier conditions. Positive values indicate a trend towards wetter conditions.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 6: Observed mean Non-Growing Season Rainfall (May–Sep) across all growing years from 1997–2017.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 7: Change in Non-Growing Season Rainfall (May–Sep) between the current (1997–2017) and historical (1961–1990) periods. Negative values indicate a trend
towards drier conditions. Positive values indicate a trend towards wetter conditions.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 8: Observed mean Annual Rainfall (Jul–Jun) across all growing years from 1997–2017.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 9: Change in Annual Rainfall (Jul–Jun) between the current (1997–2017) and historical (1961–1990) periods. Negative values indicate a trend towards drier
conditions. Positive values indicate a trend towards wetter conditions.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 10: Observed mean annual Aridity Index across all growing years from 1997–2017. Aridity Index is a value that characterises the ratio between the mean annual
rainfall and mean annual evaporation. Low values indicate drier conditions. High values indicate wetter conditions.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

National Maps

Figure 11: Observed percentage change in mean annual Aridity Index between the current (1997–2017) and historical (1961–1990) periods. This shows the change already
experienced across the country. Negative values indicate a trend towards drier conditions. Positive values indicate a trend towards wetter conditions.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

Reference Bar Charts

Figure 12: Wine regions of Australia ranked by observed mean Growing Season Temperature for the period 1997–2017. The growing
season is defined to be October to April; e.g. the first growing season is October 1997 to April 1998, and the last growing
season is October 2016 to April 2017.

Figure 13: Wine regions of Australia ranked by observed growing year maximum Growing Degree Days for the period 1997–2017. The
values are calculated for each growing year (July to June). The growing season is defined to be October to April; e.g. the
first growing season is October 1997 to April 1998, and the last growing season is October 2016 to April 2017.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

Reference Bar Charts

Figure 14: Wine regions of Australia ranked by total Growing Season Rainfall for the period 1997–2017. The growing season is defined
to be October to April; e.g. the first growing season is October 1997 to April 1998, and the last growing season is October
2016 to April 2017.

Figure 15: Wine regions of Australia ranked by total Non-Growing Season Rainfall for the period 1997–2017. The non-growing season
is defined to be May to September; e.g. the first non-growing season is May 1997 to September 1997, and the last growing
season is May 2016 to September 2016.
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Australia’s Wine Future — A Climate Atlas
OBSERVED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

Reference Bar Charts

Figure 16: Wine regions of Australia ranked by total Annual Rainfall for the period 1997–2017. The annual periodis defined to be July
to June; e.g. the first annual period is July 1997 to June 1998, and the last annual period is July 2016 to June 2017.

Figure 17: Wine regions of Australia ranked by mean growing year Aridity Index for the period 1997–2017. The growing season is
defined to be October to April; e.g. the first growing season is October 1997 to April 1998, and the last growing season is
October 2016 to April 2017.
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Australia’s Wine Future — A Climate Atlas
PROJECTED CLIMATE ACROSS AUSTRALIA’S WINE REGIONS

Climatic Drift

Figure 1: Representation of mean Growing Year Aridity Index vs mean Growing Season Temperature for each Australian Geographic Indication, averaged within 20-year time periods (1997–2017, 2021–2040, 2041–2060, 2061–2080, and 2081–2100), following the RCP8.5 scenario. Points represent observed conditions during
the current period (1997–2017). Lines indicate the general direction of change projected into the future (based on the CFAP2019 ensemble mean). Line segments represent the shorter-term direction of change projected between 20-year time periods. Values are regional and ensemble averages (i.e. a single value for
each region, for each 20-year period). The plot shows a tendency of regions to move towards warmer and drier conditions (i.e. higher mean Growing Season Temperature and lower mean Growing Year Aridity Index ). Regions that currently experience quite wet conditions (points on the right-hand side of the plot)
are projected to have both drying and warming challenges to address into the future (pathways are diagonal). Regions that are already very arid (points on the left-hand side of plot) are projected to have challenges driven mostly by warming tempreatures (pathways are more vertical).

29

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE



PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE



Victoria

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE



PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE



Australia’s Wine Future — A Climate Atlas
GRAMPIANS

Heat

Figure 1: Observed mean Growing Season Temperature (Oct–Apr) across all
growing years from 1997–2017.

Figure 2: The change in Growing Season Temperature between the current
(1997–2017) and historical (1961–1990) periods. Growing Season
Temperature has increased across the region over recent decades.

Figure 3: Projected mean Growing Season Temperature (Oct–Apr) for 20-year
time periods from 2021 to 2100. Growing Season Temperature is
expected to increase steadily into the future. Each grid cell is the mean
of the 6 ensemble members.

Figure 4: Growing Season Temperature (GST) over time. Blue points are the values for each grid cell, for each of the 6 ensemble members. Solid lines are timeseries representing grid cells for
colder and warmer locations within the region based on current conditions (1997–2017). Horizontal grey bars represent the mean GST value during 1997–2017 in selected regions
across Australia. These provide a comparison between current conditions elsewhere and future conditions in this region, helping to identify future analogue regions. Coloured bars
represent the projected global temperature increase expected into the future (following the RCP 8.5 scenario). These can be used to make decisions based on projected temperature
change rather than time (for example, if the rate of warming rapidly increases, useful information can still be extracted from these figures by using the shade boxes instead of the
time-axis).

Figure 5: Probability distribution of GST for 20-year time periods from 2001 to 2100. Variability can
occur spatially within the region, across years, or between ensemble members. Grey shapes
represent the probability distribution of GST for contrasting regions during 1997–2017. A shift
to the right (left) indicates warmer (cooler) conditions.

Figure 6: Probability distribution of growing year maximum GDD for 20-year time periods from 2001 to 2100.
Variability can occur spatially within the region, across years, or between ensemble members. Grey shapes
represent the probability distribution of growing year maximum GDD for contrasting regions during
1997–2017. A shift to the right (left) indicates warmer (cooler) conditions.

Figure 7: Cumulative Growing Degree Days (GDD) across the growing year (July–June).
Dashed lines show GDD values (1000, 1500, 2000, 2500) for some example
phenological thresholds. Each growing year is represented by a coloured line. In
future time periods, heat accumulates faster, thresholds are reached earlier and
maximum GDD reached is higher.

Figure 8: Probability distributions showing the range of dates at which the example phenological thresholds (1000,
1500, 2000, 2500) are reached for each time period. Variability can occur spatially within the region, across
years, or between ensemble members. A shift to the left (right) indicates earlier (later) harvest dates. A
wider (thinner) curve indicates a larger (smaller) range of harvest dates. A missing time period indicates
that the specific phenological threshold was not reached within the growing year (July–June).
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Australia’s Wine Future — A Climate Atlas
GRAMPIANS

Moisture

Figure 1: Observed mean Growing Season Rainfall (Oct–Apr) across all growing
years from 1997–2017.

Figure 2: Change in Growing Season Rainfall (Oct–Apr) between the current
(1997–2017) and historical (1961–1990) periods. Negative values
indicate a trend towards drier conditions. Positive values indicate a
trend towards wetter conditions.

Figure 3: Projected mean Growing Season Rainfall (Oct–Apr) for 20-year time
periods from 2021 to 2100. Each grid cell is the mean of the 6 ensemble
members.

Figure 4: Time series of Growing Season Rainfall (mm). Blue points are the annual values for each grid cell, for each of the 6
ensemble members. Horizontal grey bars represent the mean Growing Season Rainfall value during 1997–2017 in
selected regions across Australia. These provide a comparison between current conditions (1997–2017) elsewhere and
future conditions in this region and help identify future analogue regions. Coloured bars represent the projected mean
global temperature increase into the future (following the RCP 8.5 scenario). These can be used to make decisions
based on projected temperature change rather than time.

Figure 5: As with Figure 4, but for Non-Growing Season Rainfall (mm). Horizontal grey bars represent the mean Non-Growing
Season Rainfall value during 1997–2017 in selected regions across Australia.

Figure 6: Violin plots of monthly rainfall (mm) for 20-year time periods from 2001 to
2100. Each violin represents monthly totals for each grid cell, for each of the 6
ensemble members, and for each growing year within the time period. In each
panel the monthly violins indicate the expected probability distribution of
rainfall across the growing year. The current period (2001–2020) is shadowed
underneath the future time periods to highlight any differences expected into the
future. Dots represent the mean monthly rainfall for each violin. If the violin
shifts lower (higher) this indicates a change towards drier (wetter) conditions.

Figure 7: Seasonal rainfall (Winter, Spring, Summer, Autumn) (mm), presented as a probability distribution for each 20-year
period. The shape of the curve is driven by the level of variability experienced within each 20-year period. Variability
can occur spatially within the region, across years, or between ensemble members. Grey shapes represent the
probability distribution of seasonal rainfall for contrasting regions during 1997–2017. Differences in the shape of curves
between the current and future periods indicate a change in the typical conditions. A shift to the left (right) indicates
an increase in drier (wetter) conditions.

Figure 8: Number of rainy days during harvest for each 20-year period. Harvest refers to
the date when Growing Degree Days (GDD) reach example phenological
thresholds (1000, 1500, 2000, 2500) which were chosen to reflect development time
of different grape styles and varieties. Rainy days during harvest were defined as
days with >10mm of rain from 7 days before to 7 days after the date each GDD
threshold was reached. Variability can occur spatially within the region, across
years, or between ensemble members. A shift in the curve to the left (right)
indicates fewer (more) rainy days during harvest. A missing time period indicates
that the specific phenological threshold was not reached within the growing year
(July–June).
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Australia’s Wine Future — A Climate Atlas
GRAMPIANS

Aridity

Figure 1: Observed mean annual Aridity Index across all growing years from
1997–2017. Aridity Index is a value that characterises the ratio
between the mean annual rainfall and mean annual evaporation. Low
(high) values indicate drier (wetter) conditions.

Figure 2: Observed percentage change in mean annual Aridity Index between the
current (1997–2017) and historical (1961–1990) periods. This shows the
change already experienced across the region. Negative (positive)
values indicate a trend towards drier (wetter) conditions.

Figure 3: Projected mean annual Aridity Index for 20-year time periods from
2021 to 2100. Each grid cell is the mean of the 6 ensemble members.
Decreasing (increasing) values indicate a trend towards drier (wetter)
conditions.

Figure 4: Time series of annual Aridity Index. Points are the annual means for each grid cell in the region, for each of the
6 ensemble members. Aridity Index values >2 all indicate very wet conditions. There is no meaningful difference
past this value, so higher values were not presented. Horizontal grey bars represent the mean annual Aridity
Index from selected regions across Australia — these provide an example of conditions this region may transition
towards in the future. Coloured bars represent the projected global temperature increase expected in the future
(following the RCP 8.5 scenario) which can be used to make decisions based on projected temperature change
rather than time (for example, if the rate of warming rapidly increases, where temperature changes are
experienced earlier, useful information can still be extracted from these figures by using the coloured boxes
instead of the time-axis).

Figure 5: Violin plots of monthly Aridity Index for 20-year time periods from 2001 to 2100.
Each violin represents monthly averages for each grid cell, for each of the 6 ensemble
members, and for each growing year within the time period. In each 20-year panel
the violins indicate the expected probability distribution of Aridity Index within each
month across the growing year. The current period (2001–2020) is shadowed
underneath the future time periods to highlight any differences expected into the
future. Dots represent the mean monthly Aridity Index for each violin. If the violin
shifts lower (higher) this indicates a change towards drier (wetter) conditions.

Figure 6: Seasonal Aridity Index (Winter, Spring, Summer, Autumn), presented as a probability distribution for each
20-year period. The shape of the curve is driven by the level of variability experienced within each 20-year
period. Variability can occur spatially within the region, across years, or between ensemble members. Grey
shapes represent the probability distribution of seasonal aridity for contrasting regions during 1997–2017.
Differences in the shape of curves between the current and future periods indicate a change in the typical
conditions. A shift to the left (right) indicates an increase in drier (wetter) conditions. Aridity Index values >2
all indicate very wet conditions.

Figure 7: Mean annual Aridity Index accumulated from start of the growing season
(July) to date of harvest, presented as a probability distribution for each
20-year period. Date of harvest refers to the date at which Growing Degree
Days reach some example phenological thresholds (1000, 1500, 2000, 2500),
chosen to reflect development time of different grape styles and varieties.
Variability can occur spatially within the region, across years, or between
ensemble members. A shift to the left (right) indicates drier (wetter)
conditions. A missing time period indicates that the specific phenological
threshold was not reached within the growing year (July–June).
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Australia’s Wine Future — A Climate Atlas
GRAMPIANS

Extremes — Hot

Figure 1: Observed mean excess heat factor (EHF) during heatwaves (as per
Nairn and Fawcett (2013)), across all growing years from 1997–2017.
EHF is an index that characterises heatwaves, high values indicate
more intense heatwaves. The mean EHF is the mean value from all
heatwaves that occurred from 1997–2017.

Figure 2: Change in mean EHF during heatwaves between the current
(1997–2017) and historical (1961–1990) periods. Positive (negative)
values indicate a trend towards more (less) intense heatwaves.

Figure 3: Projected mean EHF during heatwaves for 20-year time periods from
2021 to 2100. Each grid cell is the mean of the 6 ensemble members.
Increasing (decreasing) values indicate a trend towards more (less)
intense heatwaves.

Figure 4: Time series of the number of days per growing year with temperatures greater than 30◦C, 35◦C, 40◦C and 45◦C. Areas indicate the number of days each threshold is exceeded per growing year. Values are
averaged across all grid cells and the 6 ensemble members. Colours indicate each of the extreme threshold values. Generally increasing frequencies reflect a warming climate.

Figure 5: Time series of the number of days per growing year of High human heat stress. This is defined as days when daily maximum temperatures are >30◦C and daily minimum humidity is >60%. These
conditions cause severe risk of heat stress to humans (and potentially low productivity) to those working in exposed areas. Humans cannot work in high temperature, high humidity environments without
appropriate adaptive behaviours and equipment. Points are for each grid cell from each of the 6 ensemble members. Coloured bars represent the projected global temperature increase expected into the
future (following the RCP 8.5 scenario) which can be used to make decisions based on projected temperature change rather than time.

Figure 6: Violins plots of high temperatures (◦C) per growing year for 20-year time periods from 2001 to 2100. Colours indicate extreme threshold values (90th, 95th and 99th percentile) of temperature during each
growing year. The 99th percentile value reflects the 4th hottest day each growing year; the 95th percentile is the 18th hottest day each growing year; and the 90th percentile is the 36th hottest day each
growing 1year. Generally increasing values reflect a warming climate.

Figure 7: Probability distributions of daily maximum temperatures and minimum overnight temperatures during
heatwaves. Colour of each curve indicates different 20-year periods. The shape of the curve is driven by the
level of variability experienced within each 20-year period. Variability can occur spatially within the region,
across years, or between ensemble members. A shift to the right (left) indicates higher (lower) temperature
heatwaves.

Figure 8: Probability distribution of the date when heatwaves occur. The shape
of the curve is driven by the level of variability experienced within
each 20-year period. Variability can occur spatially within the region,
across years, or between ensemble members. A shift to the left (right)
indicates heatwaves occurring earlier (later).
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Australia’s Wine Future — A Climate Atlas
GRAMPIANS

Extremes — Cold

Figure 1: Observed mean number of days at risk of frost during the growing
season (October to April) over the period 1997–2017. Days at risk of
frost are those with a daily minimum temperature <2◦C. High (low)
values indicate high (low) frost risk.

Figure 2: Change in the mean number of days at risk of frost during the growing
season (October to April) between the current (1997–2017) and
historical (1961–1990) periods. Days at risk of frost are days with a
minimum temperature <2◦C. High (low) values indicate increased
(decreased) frost risk.

Figure 3: Projected mean number of days at risk of frost during the growing
season (October to April) for 20-year time periods from 2021 to 2100.
Each grid cell is the mean of the 6 ensemble members. Increasing
(decreasing) values indicate a trend towards higher (lower) frost risk.

Figure 4: Violin plots of daily minimum temperature (◦C) for each month for
20-year periods from 2001 to 2100. Each violin represents daily data
for each grid cell, for each of the 6 ensemble members, and for each
growing year within the time period; e.g. the top-left most violin
represents the daily minimum temperature for every January day in
the period 2001–2020, for each grid cell in the region, for each of the
6 ensemble members. The current period (2001-2020) has been
shadowed underneath future time periods to highlight any
differences expected into the future. Dots represent the means for
each violin. If the violin shifts lower (higher) this indicates a change
towards colder (warmer) conditions.

Figure 5: Monthly average cumulative frost days for 20-year periods from
2001 to 2100. Values are a summary across all grid cells, for all
years with each 20-year period, for each of the 6 ensemble
members. This reflects how frost risk varies across the year within
each 20-year period. The current period (2001–2020) has been
shadowed underneath future time periods to highlight any
differences expected into the future.

Figure 6: Timeseries of accumulated frost intensity, which is
the cumulative total of temperatures less than 2◦C
over a growing season. This index characterises
exposure to cold conditions. High values indicate
cold winters/springs. Points are for each grid cell,
averaged across the 6 ensemble members.

Figure 7: Time series of the number of days per growing year
when temperature falls below selected thresholds
(<2◦C, <0◦C, <-2◦C). Areas indicate the number
of days temperatures fall below each threshold per
growing year. Values are averaged across all grid
cells and the 6 ensemble members. Fewer instances
reflect a warming climate.37
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Australia’s Wine Future — A Climate Atlas
YARRA VALLEY

Heat

Figure 1: Observed mean Growing Season Temperature (Oct–Apr) across all
growing years from 1997–2017.

Figure 2: The change in Growing Season Temperature between the current
(1997–2017) and historical (1961–1990) periods. Growing Season
Temperature has increased across the region over recent decades.

Figure 3: Projected mean Growing Season Temperature (Oct–Apr) for 20-year
time periods from 2021 to 2100. Growing Season Temperature is
expected to increase steadily into the future. Each grid cell is the mean
of the 6 ensemble members.

Figure 4: Growing Season Temperature (GST) over time. Blue points are the values for each grid cell, for each of the 6 ensemble members. Solid lines are timeseries representing grid cells for
colder and warmer locations within the region based on current conditions (1997–2017). Horizontal grey bars represent the mean GST value during 1997–2017 in selected regions
across Australia. These provide a comparison between current conditions elsewhere and future conditions in this region, helping to identify future analogue regions. Coloured bars
represent the projected global temperature increase expected into the future (following the RCP 8.5 scenario). These can be used to make decisions based on projected temperature
change rather than time (for example, if the rate of warming rapidly increases, useful information can still be extracted from these figures by using the shade boxes instead of the
time-axis).

Figure 5: Probability distribution of GST for 20-year time periods from 2001 to 2100. Variability can
occur spatially within the region, across years, or between ensemble members. Grey shapes
represent the probability distribution of GST for contrasting regions during 1997–2017. A shift
to the right (left) indicates warmer (cooler) conditions.

Figure 6: Probability distribution of growing year maximum GDD for 20-year time periods from 2001 to 2100.
Variability can occur spatially within the region, across years, or between ensemble members. Grey shapes
represent the probability distribution of growing year maximum GDD for contrasting regions during
1997–2017. A shift to the right (left) indicates warmer (cooler) conditions.

Figure 7: Cumulative Growing Degree Days (GDD) across the growing year (July–June).
Dashed lines show GDD values (1000, 1500, 2000, 2500) for some example
phenological thresholds. Each growing year is represented by a coloured line. In
future time periods, heat accumulates faster, thresholds are reached earlier and
maximum GDD reached is higher.

Figure 8: Probability distributions showing the range of dates at which the example phenological thresholds (1000,
1500, 2000, 2500) are reached for each time period. Variability can occur spatially within the region, across
years, or between ensemble members. A shift to the left (right) indicates earlier (later) harvest dates. A
wider (thinner) curve indicates a larger (smaller) range of harvest dates. A missing time period indicates
that the specific phenological threshold was not reached within the growing year (July–June).
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Australia’s Wine Future — A Climate Atlas
YARRA VALLEY

Moisture

Figure 1: Observed mean Growing Season Rainfall (Oct–Apr) across all growing
years from 1997–2017.

Figure 2: Change in Growing Season Rainfall (Oct–Apr) between the current
(1997–2017) and historical (1961–1990) periods. Negative values
indicate a trend towards drier conditions. Positive values indicate a
trend towards wetter conditions.

Figure 3: Projected mean Growing Season Rainfall (Oct–Apr) for 20-year time
periods from 2021 to 2100. Each grid cell is the mean of the 6 ensemble
members.

Figure 4: Time series of Growing Season Rainfall (mm). Blue points are the annual values for each grid cell, for each of the 6
ensemble members. Horizontal grey bars represent the mean Growing Season Rainfall value during 1997–2017 in
selected regions across Australia. These provide a comparison between current conditions (1997–2017) elsewhere and
future conditions in this region and help identify future analogue regions. Coloured bars represent the projected mean
global temperature increase into the future (following the RCP 8.5 scenario). These can be used to make decisions
based on projected temperature change rather than time.

Figure 5: As with Figure 4, but for Non-Growing Season Rainfall (mm). Horizontal grey bars represent the mean Non-Growing
Season Rainfall value during 1997–2017 in selected regions across Australia.

Figure 6: Violin plots of monthly rainfall (mm) for 20-year time periods from 2001 to
2100. Each violin represents monthly totals for each grid cell, for each of the 6
ensemble members, and for each growing year within the time period. In each
panel the monthly violins indicate the expected probability distribution of
rainfall across the growing year. The current period (2001–2020) is shadowed
underneath the future time periods to highlight any differences expected into the
future. Dots represent the mean monthly rainfall for each violin. If the violin
shifts lower (higher) this indicates a change towards drier (wetter) conditions.

Figure 7: Seasonal rainfall (Winter, Spring, Summer, Autumn) (mm), presented as a probability distribution for each 20-year
period. The shape of the curve is driven by the level of variability experienced within each 20-year period. Variability
can occur spatially within the region, across years, or between ensemble members. Grey shapes represent the
probability distribution of seasonal rainfall for contrasting regions during 1997–2017. Differences in the shape of curves
between the current and future periods indicate a change in the typical conditions. A shift to the left (right) indicates
an increase in drier (wetter) conditions.

Figure 8: Number of rainy days during harvest for each 20-year period. Harvest refers to
the date when Growing Degree Days (GDD) reach example phenological
thresholds (1000, 1500, 2000, 2500) which were chosen to reflect development time
of different grape styles and varieties. Rainy days during harvest were defined as
days with >10mm of rain from 7 days before to 7 days after the date each GDD
threshold was reached. Variability can occur spatially within the region, across
years, or between ensemble members. A shift in the curve to the left (right)
indicates fewer (more) rainy days during harvest. A missing time period indicates
that the specific phenological threshold was not reached within the growing year
(July–June).
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Australia’s Wine Future — A Climate Atlas
YARRA VALLEY

Aridity

Figure 1: Observed mean annual Aridity Index across all growing years from
1997–2017. Aridity Index is a value that characterises the ratio
between the mean annual rainfall and mean annual evaporation. Low
(high) values indicate drier (wetter) conditions.

Figure 2: Observed percentage change in mean annual Aridity Index between the
current (1997–2017) and historical (1961–1990) periods. This shows the
change already experienced across the region. Negative (positive)
values indicate a trend towards drier (wetter) conditions.

Figure 3: Projected mean annual Aridity Index for 20-year time periods from
2021 to 2100. Each grid cell is the mean of the 6 ensemble members.
Decreasing (increasing) values indicate a trend towards drier (wetter)
conditions.

Figure 4: Time series of annual Aridity Index. Points are the annual means for each grid cell in the region, for each of the
6 ensemble members. Aridity Index values >2 all indicate very wet conditions. There is no meaningful difference
past this value, so higher values were not presented. Horizontal grey bars represent the mean annual Aridity
Index from selected regions across Australia — these provide an example of conditions this region may transition
towards in the future. Coloured bars represent the projected global temperature increase expected in the future
(following the RCP 8.5 scenario) which can be used to make decisions based on projected temperature change
rather than time (for example, if the rate of warming rapidly increases, where temperature changes are
experienced earlier, useful information can still be extracted from these figures by using the coloured boxes
instead of the time-axis).

Figure 5: Violin plots of monthly Aridity Index for 20-year time periods from 2001 to 2100.
Each violin represents monthly averages for each grid cell, for each of the 6 ensemble
members, and for each growing year within the time period. In each 20-year panel
the violins indicate the expected probability distribution of Aridity Index within each
month across the growing year. The current period (2001–2020) is shadowed
underneath the future time periods to highlight any differences expected into the
future. Dots represent the mean monthly Aridity Index for each violin. If the violin
shifts lower (higher) this indicates a change towards drier (wetter) conditions.

Figure 6: Seasonal Aridity Index (Winter, Spring, Summer, Autumn), presented as a probability distribution for each
20-year period. The shape of the curve is driven by the level of variability experienced within each 20-year
period. Variability can occur spatially within the region, across years, or between ensemble members. Grey
shapes represent the probability distribution of seasonal aridity for contrasting regions during 1997–2017.
Differences in the shape of curves between the current and future periods indicate a change in the typical
conditions. A shift to the left (right) indicates an increase in drier (wetter) conditions. Aridity Index values >2
all indicate very wet conditions.

Figure 7: Mean annual Aridity Index accumulated from start of the growing season
(July) to date of harvest, presented as a probability distribution for each
20-year period. Date of harvest refers to the date at which Growing Degree
Days reach some example phenological thresholds (1000, 1500, 2000, 2500),
chosen to reflect development time of different grape styles and varieties.
Variability can occur spatially within the region, across years, or between
ensemble members. A shift to the left (right) indicates drier (wetter)
conditions. A missing time period indicates that the specific phenological
threshold was not reached within the growing year (July–June).
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Australia’s Wine Future — A Climate Atlas
YARRA VALLEY

Extremes — Hot

Figure 1: Observed mean excess heat factor (EHF) during heatwaves (as per
Nairn and Fawcett (2013)), across all growing years from 1997–2017.
EHF is an index that characterises heatwaves, high values indicate
more intense heatwaves. The mean EHF is the mean value from all
heatwaves that occurred from 1997–2017.

Figure 2: Change in mean EHF during heatwaves between the current
(1997–2017) and historical (1961–1990) periods. Positive (negative)
values indicate a trend towards more (less) intense heatwaves.

Figure 3: Projected mean EHF during heatwaves for 20-year time periods from
2021 to 2100. Each grid cell is the mean of the 6 ensemble members.
Increasing (decreasing) values indicate a trend towards more (less)
intense heatwaves.

Figure 4: Time series of the number of days per growing year with temperatures greater than 30◦C, 35◦C, 40◦C and 45◦C. Areas indicate the number of days each threshold is exceeded per growing year. Values are
averaged across all grid cells and the 6 ensemble members. Colours indicate each of the extreme threshold values. Generally increasing frequencies reflect a warming climate.

Figure 5: Time series of the number of days per growing year of High human heat stress. This is defined as days when daily maximum temperatures are >30◦C and daily minimum humidity is >60%. These
conditions cause severe risk of heat stress to humans (and potentially low productivity) to those working in exposed areas. Humans cannot work in high temperature, high humidity environments without
appropriate adaptive behaviours and equipment. Points are for each grid cell from each of the 6 ensemble members. Coloured bars represent the projected global temperature increase expected into the
future (following the RCP 8.5 scenario) which can be used to make decisions based on projected temperature change rather than time.

Figure 6: Violins plots of high temperatures (◦C) per growing year for 20-year time periods from 2001 to 2100. Colours indicate extreme threshold values (90th, 95th and 99th percentile) of temperature during each
growing year. The 99th percentile value reflects the 4th hottest day each growing year; the 95th percentile is the 18th hottest day each growing year; and the 90th percentile is the 36th hottest day each
growing 1year. Generally increasing values reflect a warming climate.

Figure 7: Probability distributions of daily maximum temperatures and minimum overnight temperatures during
heatwaves. Colour of each curve indicates different 20-year periods. The shape of the curve is driven by the
level of variability experienced within each 20-year period. Variability can occur spatially within the region,
across years, or between ensemble members. A shift to the right (left) indicates higher (lower) temperature
heatwaves.

Figure 8: Probability distribution of the date when heatwaves occur. The shape
of the curve is driven by the level of variability experienced within
each 20-year period. Variability can occur spatially within the region,
across years, or between ensemble members. A shift to the left (right)
indicates heatwaves occurring earlier (later).
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Australia’s Wine Future — A Climate Atlas
YARRA VALLEY

Extremes — Cold

Figure 1: Observed mean number of days at risk of frost during the growing
season (October to April) over the period 1997–2017. Days at risk of
frost are those with a daily minimum temperature <2◦C. High (low)
values indicate high (low) frost risk.

Figure 2: Change in the mean number of days at risk of frost during the growing
season (October to April) between the current (1997–2017) and
historical (1961–1990) periods. Days at risk of frost are days with a
minimum temperature <2◦C. High (low) values indicate increased
(decreased) frost risk.

Figure 3: Projected mean number of days at risk of frost during the growing
season (October to April) for 20-year time periods from 2021 to 2100.
Each grid cell is the mean of the 6 ensemble members. Increasing
(decreasing) values indicate a trend towards higher (lower) frost risk.

Figure 4: Violin plots of daily minimum temperature (◦C) for each month for
20-year periods from 2001 to 2100. Each violin represents daily data
for each grid cell, for each of the 6 ensemble members, and for each
growing year within the time period; e.g. the top-left most violin
represents the daily minimum temperature for every January day in
the period 2001–2020, for each grid cell in the region, for each of the
6 ensemble members. The current period (2001-2020) has been
shadowed underneath future time periods to highlight any
differences expected into the future. Dots represent the means for
each violin. If the violin shifts lower (higher) this indicates a change
towards colder (warmer) conditions.

Figure 5: Monthly average cumulative frost days for 20-year periods from
2001 to 2100. Values are a summary across all grid cells, for all
years with each 20-year period, for each of the 6 ensemble
members. This reflects how frost risk varies across the year within
each 20-year period. The current period (2001–2020) has been
shadowed underneath future time periods to highlight any
differences expected into the future.

Figure 6: Timeseries of accumulated frost intensity, which is
the cumulative total of temperatures less than 2◦C
over a growing season. This index characterises
exposure to cold conditions. High values indicate
cold winters/springs. Points are for each grid cell,
averaged across the 6 ensemble members.

Figure 7: Time series of the number of days per growing year
when temperature falls below selected thresholds
(<2◦C, <0◦C, <-2◦C). Areas indicate the number
of days temperatures fall below each threshold per
growing year. Values are averaged across all grid
cells and the 6 ensemble members. Fewer instances
reflect a warming climate.43
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Australia’s Wine Future — A Climate Atlas
METHODS AND INTERPRETATION

What are weather reanalysis products?

General background information

The difference between weather and climate

Weather describes what is happening in the atmosphere on a day-to-day basis or at a spe-
cific time, while climate describes the chance of experiencing particular kinds of weather at a
specific location within a set period of time (typically >10 years).

The climate of a location is affected by latitude, topography, altitude and proximity to large
water bodies and their associated currents and can only be assessed over long time periods in
order to incorporate the natural variability that occurs over several years.

Climate change

Natural Greenhouse effect

Greenhouse gases such as carbon dioxide keep the earth warm by allowing radiation from the
sun to enter the atmosphere, while trapping a greater portion of outgoing radiation within the
climate system. This maintains an average global temperature at ~15°C. Without greenhouse
gases, the average temperature on Earth would be ~-18°C, too cold to sustain life as we know
it.

The amount of energy that the Earth receives from the sun changes over time naturally in
response to variations in Earth’s orientation and orbit relative to the sun and the internal ra-
diation cycles occurring within the sun itself. Additionally, the distribution of tectonic plates
influences the capacity of heat to be transported around the planet by the atmosphere and the
oceans. For example, when the land areas are concentrated towards the poles (equator), there
is more (less) snow and ice on Earth, which means more (less) energy is reflected straight back
out to space, resulting in cooler (warmer) global average temperatures. The concentration of
greenhouse gases also varies naturally over millions of years depending on volcanic activity,
global vegetation types, interacting with biological inputs and outputs, controlled by long-
term biogeochemical cycles. The complex interplay of these processes (and others) determines
the Earth’s climate at any point in geological time.

Enhanced Greenhouse effect

Since the industrial revolution, humans have been increasing the concentration and composi-
tion of greenhouse gases in the atmosphere. These changes have occurred extremely rapidly,
becoming the dominant influence on global climate, overshadowing the influence of any natu-
ral cycles (IPCC, 2014). Before the industrial revolution, CO2 levels were 280 ppm. In 2013,
CO2 levels surpassed 400ppm for the first time in recorded history. This level is higher than
it has been in at least 800,000 years.

The more greenhouse gases humans put into the atmosphere by burning fossil fuels (oil/coal),
the more heat is trapped in the Earth’s system and the warmer the globe becomes. This af-
fects atmospheric and ocean circulation patterns, fundamentally changing the way the climate
system behaves. This changes the characteristics of climate experienced at any one location,
both in terms of average conditions and the magnitude and intensity of extreme events (e.g.,
droughts, floods, heatwaves, cyclones etc.).

What are climate projections?

Climate projections are outputs from computer models used to represent the Earth’s mean
climate state and variability. They are not intended to predict the weather on particular dates
in the future and their initial conditions are not based on observations.

The advantage of climate models is they can be nudged in different ways to determine the
influence of particular variables on the climate system, or even test the impact of different
future scenarios on the climate system over long timescales into the future. This allows climate
projections to establish the range in future climates that could plausibly occur. These model-
derived descriptions of possible future climates are dependent on what humans do regarding
the greenhouse gas (mainly CO2) emissions, under a set of plausible scenarios.

Climate projections are generally described in 20 or 30 year periods, to incorporate natural
variability in the climate system. This reduces the effect of annual to decadal events (e.g.,

droughts, cool/ hot seasons or ENSO cycles) on the average.

What are climate predictions/forecasts?

Climate forecasts aim to accurately and precisely predict the weather that will be experi-
enced at a precise place and time in the future. In order to achieve this, climate forecasts
use observations to configure the atmosphere within a climate model so it represents the con-
figuration of the actual atmosphere as accurately as possible (at a particular time, usually
today or now). The more accurately the atmosphere is configured, the more likely it is that a
forecasting model can accurately predict the future. Forecasting has improved such that the
accuracy and precision of a 5 day forecast in 2017 is more reliable than a 2 day forecast in the
1980s. These improvements have been driven by advances such as higher resolution observa-
tional data archives (due to satellite and surface ocean measurements), increased computer
processing power and improved understanding and representation of atmospheric dynamics
within climate models.

What are weather reanalysis products?

Weather reanalysis products (such as the ERA-Iterim mentioned within the methods) are
climate model outputs explicitly designed to provide estimates of atmospheric variables at lo-
cations or times between observations. A climate model is configured using observations and
then is run forward in time until the next set of observations can be incorporated. Reanal-
ysis data products provide data archives that are consistent (use the same assumptions and
equations), have full spatial coverage across the target domain (no missing data points), are
continuous through time and estimate atmospheric variables that either were not measured
or cannot be measured. Reanalysis products aim to provide a better estimate of the observed
atmosphere. They can be more accurate than observations (due to site specific interferences
such as shading, or protection from winds).

Global Climate Models (GCMs)

Global Climate Models (GCMs) are used to simulate the Earth’s climate and are impor-
tant tools to understand how the global climate may change due to the warming influence of
increased greenhouse gas concentrations. Global Climate Models simulate the different com-
ponents of the Earth system, including the atmosphere, ocean, land-surface, sea-ice, aerosols
and the carbon cycle.

The foundation of climate modelling is just a few mathematical equations that describe the
four-dimensional (horizontal, vertical and temporal) motion of air and its thermodynamic
(heat and energetic) state. These equations, in conjunction with the idea that mass and en-
ergy must be conserved, are used to estimate the change in the state of the atmosphere at
each gridbox in a model. All gridboxes pass information between each other to best repre-
sent the atmosphere from one time step to another, giving a numerical representation of the
atmosphere and oceans.

As far as possible, climate models are based on physical theory, and processes are explicitly
resolved using physical equations. However, there are some processes that cannot be described
by fundamental equations, either because they occur at a scale that is smaller than the size
of the gridboxes (e.g., atmospheric phenomena such as small clouds or thermal updrafts), or
because they are experimentally derived. These mechanisms have to be given a descriptive or
simplified representation to be incorporated into the model.

The higher resolution (in both space and time), the smaller the gridboxes or timesteps, giving
more information about the state of the atmosphere. This includes more detailed information
about the land surface characteristics and topography, which greatly affect the weather. Very
high resolution models are very computationally intensive as all of the equations have to be
calculated for each pixel, and run for many decades. (In comparison, weather forecasting mod-
els can be run at far higher resolution because they only need to represent the atmosphere for
a few days). GCMs are therefore generally run at coarse resolution (~50km–250km horizontal
resolution, 10–20 vertical layers in the atmosphere, and up to 30 layers in the oceans, at 6
hourly timesteps).

Regional Climate Models (RCMs)

The complexity of GCMs results in them being configured for coarse resolutions (spatial res-
olution of 50 to 200km, temporal resolutions of 6 hourly timesteps), due to the limitations
of current supercomputers. As a result, certain features in the regional climate are often
poorly represented by GCMs including mountain ranges, coastlines, urban areas and other
atmospheric phenomena such as storms and rainfall processes. Downscaling methods are
sometimes employed to address this limitation of the GCMs, providing higher spatial and
temporal resolution climate simulations for a region (typically improved resolutions of be-
tween 1 to 50km resolution, and temporal resolutions of 1 minute to 1 hourly timesteps).
Two popular downscaling methods are statistical downscaling and dynamical downscaling.
Statistical downscaling relies on historical statistical relationships between observations and
large-scale behaviour of the atmosphere. Dynamical downscaling employs Regional Climate
Models (RCMs) that are based on modelling techniques that are like those used by GCMs, but
with the computing resources focused over a region and with a focus on the atmosphere and
land-surface components (i.e., a trade-off is made where there is less space covered/included,
but higher resolution representation of the climate system). In both cases, the downscaling
process has key inputs from (i.e., they are informed by) coarse resolution GCM projections,
often referred to as a host or parent climate model.

How well do climate models replicate the climate at different scales?

Scale is a key component of understanding the climate and fundamental to detecting climate
change signals. GCMs are run at low resolution, so do not perform well when compared with
observations from specific locations, as the gridpoint is representing the average of a vast area
rather than a single point, which is affected by local microclimatic characteristics. This means
that the subgrid scale processes such as cumulus clouds, convection, updrafts and downdraft
in storms are not well represented. These phenomena are linked to small-scale processes that
cannot be simulated by the GCMs due to limitations in computing power or limited scientific
understanding of the physical processes. They do a good job at simulating global and con-
tinental scale climate and provide a general overview of how the climate is changing. Long
term averages of parameters such as temperature and precipitation along with less dynamic
parameters like ocean temperatures, boundary currents and ice cover, are well represented
by the GCMs. They are also adept at simulating aspects of regional climate variability, such
as major monsoon systems and seasonal changes in temperature, often driven by these less
dynamic parameters.

Detecting climate change signals at different scales

Detecting climate change signals is about the signal versus the natural variability (or signal to
noise) ratio for the area of interest. The larger the area, the more the day-to-day variability is
dampened down, so the more likely it is to reveal climate trends. Specific locations, especially
in the extratropical parts of Australia on the boundary between the polar and tropical air
masses, have high variability. A good example is somewhere like Melbourne. When looking
at extreme heat days, 40°C days for example, and attempting to establish a climate change
signal, it is difficult because the variability in temperature in Melbourne is very high. The
summer range of daily maximum temperature is around 30°C, so a one degree climate change
signal is going to have very little effect on how many 40°C days are experienced in Melbourne.
When looking at Australia as a whole however, this day-to-day variability is lower because a
hot day in Melbourne is often accompanied by a cool day in different parts of the continent, so
the Australian average temperature is relatively stable. This means that if there’s a heatwave,
where Australia is for example three degrees warmer than the climatological mean, it’s more
likely that this event would have been impossible without climate change and that this event
can be attributed to climate change. This is also true over shorter and longer timescales. The
longer the timescale (e.g., annual vs decadal), the more variability (or noise) is averaged out
and more of the signal is revealed.

Uncertainty in climate projections

There are three main sources of uncertainty in climate models, which become more/less dom-
inant as the model-runs go further into the future. These are internal climate variability,
model uncertainty and future emission scenario. The importance of each of these sources of
uncertainty varies across different variables, the size of the area of interest and the length of
time period.
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Emissions scenarios

Internal variability

Internal variability is due to the year-to-year changes in the weather which are independent
of climate change. This timescale is difficult for the climate models to simulate as they are
driven by mesoscale processes (that are often at smaller scales than the grid resolution). This
uncertainty remains present throughout the model-runs but has less weighting as time goes
on due to the other sources growing. The smaller the area of interest, the more this internal
variability dominates the total uncertainty, however it is still significant at the global scale.
This is linked to phenomena such as ENSO and other drivers of natural variability.

Model uncertainties

Model uncertainties are either due to different: representations of the same process within
different model configurations (i.e., differing equations to solve the same problem); parame-
terisations due to differing model resolutions; poor understanding and simulation of processes
within the model (i.e., the equations or parameterisation schemes are unable to represent
the processes correctly). Many of these model uncertainties would be greatly improved with
higher model resolution, however, there will always be model uncertainty because microscale
processes are impossible to fully simulate. These uncertainties will always grow as a model
run goes further into the future.

Emission scenarios

Uncertainty regarding emission scenarios are based on Representative Concentration Path-
ways (RCPs, discussed above). These are storylines of how humans act into the future and
are represented by the resulting change in average global radiative forcing by 2100. The four
RCPs are numbered according to the change in radiative forcing by 2100; +2.6, +4.5, +6.0
and +8.5 watts per square metre. The spread in these emission scenarios add uncertainty
to GCM projections which always increase through time. Until 2050, all scenarios result in
similar climate change impacts, so do not add much uncertainty to the future outcome. How-
ever, past 2050, they begin to diverge rapidly, eventually becoming the dominant source of
uncertainty when estimating the future climate.

Importance of uncertainties with scales and parameters

When investigating global mean temperature, at first the internal variability is the main source
of spread, with the different models and emission scenarios having less of an impact early on in
the projections. From 2000 to 2020 the model uncertainties begin to dominate the overall un-
certainty, whereas the emission scenario, still has little influence (although for some variables,
such as global mean precipitation, model uncertainty is by far the largest contributor through-
out). Past 2050 it is the uncertainty surrounding the emissions scenario, the socio-economic
pathway the global community chooses to take, that drives uncertainty around global (and in
turn local) temperatures.

How can uncertainty be dealt with when using projections?

Research into understanding why the uncertainties in the models exist and what can and
can’t be relied on is key to dealing with these uncertainties. The models produce plausible
futures, rather than a single certain one, giving us an insight into what the future may look
like. This means that we need to adapt to possible futures and be aware of the worst case
scenarios. Using multi-model ensembles of simulations provides information covering all po-
tential futures, allowing decision makers to apply a risk management approach with regards
to imminent decisions being made today, while providing useful insights into what the longer
term future may be to enhance the strategic decisions begin developed over the medium and
longer terms.

The Coupled Model Intercomparison Project (CMIP)

The Coupled Model Intercomparison Project (CMIP) is a collaborative effort designed to im-
prove our knowledge of climate change. CMIP provides an archive of outputs from a collection
of global climate models contributed from the international climate modelling community. The
CMIP archive facilitates the study of climate models in a standardised way, enabling a diverse

community of scientists to better understand how the climate is represented by simulations;
implement changes that improve simulations of the Earth’s climate; and interpret the impact
that differing plausible futures may have on humanity. This multi-model approach allows the
global community to identify the most plausible impacts that will be realised following dif-
ferent socio-political pathways into the future. The range of Global Climate Models included
in CMIP5 represent the most diverse range of independent climate models and projections of
how the global climate will change.

The CMIP collaboration is now within its 6th phase (CMIP6), due to be completed in 2020.
The atlas is based on CMIP5 model output. The CMIP5 series of global climate simulations
were designed to test how various climate drivers impact upon the Earth’s climate. Instead
of the SRES emissions scenarios (e.g., A2, B1), which were used in previous CMIP archives,
CMIP5 presented a series of experiments called the Representative Concentration Pathways
(RCPs). These were designed to test the impact of different concentrations of heat-trapping
gases (e.g., atmospheric CO2 concentrations) over a range of time periods (see section below
on RCP’s). To further appreciate the depth and breadth of CMIP5 experiments scope, as
well as develop an understanding of the value and implications realised by this internationally
coordinated research effort, we recommend referring to:

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Work-
ing Groups I, II and III to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A.
Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. (available here: https:

//ar5-syr.ipcc.ch/topic_summary.php)

Emissions scenarios

One of the main sources of uncertainty around climate change is what choices humans make
regarding the amount of greenhouse gases we release in the future. Different emissions scenar-
ios are used to describe a range of socio-economic pathways the global community may follow,
and the resulting influence on the Earth’s climate. Some scenarios are based on the business
as usual future where humans continue to be dependent on fossil fuels. Other scenarios are
based on how well humans deal with the problem, with a range from making small, deliber-
ate actions to reduce emissions, to actively removing greenhouse gases from the atmosphere.
The resulting range reflects the uncertainty inherent in quantifying human activities and their
influence on climate. Scenarios are essentially a set of storylines based on population projec-
tions, demographics, international trade, flow of information and technology, and other social,
technological, and economic characteristics of plausible future worlds.

To ensure that the projections of GCMs can be compared in a sensible way, various scenarios
of future greenhouse gas emissions are applied consistently to all GCMs. The latest scenarios
used by the climate modelling community are known as Representative Concentration Path-
ways (RCPs). These are not emission scenarios in the traditional sense but encompass all of
the changes in the storyline leading to range in average global radiative forcing (change in
temperature due to change in atmospheric composition) by 2100.

The RCPs include RCP2.6, RCP4.5, RCP6.0 and RCP8.5. The size of the number indicates
more energy (in the form of heat, in units of Wm−2) being trapped in the Earth system
so that RCP8.5 leads to a significantly warmer future climate than RCP2.6. The highest is
RCP8.5 which is the business as usual scenario (though by no means the upper limit), whereas
RCP2.6 is ambitious in that it achieves net negative carbon dioxide emissions before the end
of the century by including a policy option. The other scenarios have different pathways and
represent different future worlds, which result in different levels of overall warming.

� RCP2.6 — following a low emissions, intense mitigation scenario where the heat trap-
ping capacity of the Earth is 2.6 Wm−2. This is the emission scenario that is closest to
a <2°C, warming consistent with the Paris Agreement target. As of 2019, this scenario
is only achievable with dramatic and rapid changes to our economic and social systems
and arrangements that must be implemented by ~2030;

� RCP4.5 — following a late start to a low emissions, intense mitigation scenario where
the heat trapping capacity of the Earth is 4.5 Wm−2. As of 2019, this scenario is only
achievable with dramatic and rapid changes to our economic and social systems and
arrangements that must be implemented by ~2040;

� RCP6.0 — following a moderate emissions, less effective mitigation scenario where the
heat trapping capacity of the Earth is 6.0 Wm−2. This is the scenario that current

international commitments to emissions reductions (as of 2019) could achieve if targets
are met;

� RCP8.5 — following a high emissions, limited mitigation scenario where the heat trap-
ping capacity of the Earth is 8.5 Wm−2. This is also referred to as the worst case or
business as usual scenario, as this is the trajectory we are currently following.
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Description of the regional climate modelling approach

General methods

Observations

Observed climate between 1997 and 2007 is summarised for each wine region, based on the
Australian Gridded Climate Data products (AGCD). These are national gridded climate data
at a resolution of 5km, based on interpolated weather station measurements. We use daily
rainfall and daily maximum and minimum air temperature to calculate observed Growing Sea-
son Temperature and Rainfall, Aridity, Frost Risk Days and Excess Heat Factor. The AGCD
were produced by the Australian Water Availability Project (AWAP), a collaborative effort
of CSIRO and the Bureau of Meteorology (BoM).

Global Climate Models used in the atlas

Six Global Climate Models (GCMs) from the CMIP5 archive were downscaled for the at-
las, These were CSIRO-BOM-ACCESS1-0, CNRM-CERFACS-CNRM-CM5, NOAA-GFDL-
GFDL-ESM2M, MOHC-HadGEM2-CC, MIROC-MIROC5 and NCC-NorESM1-M. These
models are based on the recommended GCMs for studying Australian climate change from
the Climate Change in Australia web portal. The host GCMs for downscaling were selected
to show a range of possible climate futures such as changes in the amount of warming and
reductions in rainfall (see Table 1). Note that because we are selectively downscaling GCMs
that show a range of possible futures, the downscaled simulations provide scenarios to explore
the future climate, rather than an analysis of the most probable future climate, which lies
within the range of downscaled climate.

Host GCM for downscaling Relevance for downscaling regional climate

CSIRO-BOM-ACCESS1-0 A hot, dry model that is representative of the consensus
of GCM projections, especially for south-eastern Aus-
tralia. Warming exceeds 2.5°C across most of Australia,
and >3.5°C in central Australia. Drying is projected
over most areas. This model shows a high skill score
with regard to historical climate.

CNRM-CERFACS-CNRM-CM5 A hot, wet model, consistent with the consensus of GCM
projections in Southern Australia. It has a good repre-
sentation of extreme El Niño in CMIP5 evaluations.

NOAA-GFDL-GFDL-ESM2M A hot, very dry model, with warming in central regions
exceeding 3.5°C. Drying is projected across most of the
continent, with annual precipitation projected to decline
more than 20% in many areas.

MOHC-HadGEM2-CC A hot, dry model, with warming typically >2.5°C and
>3.5°C in central regions. Annual precipitation is pro-
jected to increase in central Australia and decline else-
where including the horticultural zone; Greatest reduc-
tion in wind. Maximum consensus for many regions.

MIROC-MIROC5 A low warming, wet model for Australia, especially the
south-eastern region. Warming does not exceed 3°C,
and slight changes in annual precipitation are projected
with declines in north-east Queensland and south-west
Australia.

NCC-NorESM1-M Low warming, wetter model, representative of the
wettest scenarios within the CMIP5 archive. Warm-
ing over most of Australia exceeding 2°C. Little change
in annual precipitation is projected, particularly in the
south-east, although there is drying in south-west WA.

Table 1: The six host GCMs used for dynamical downscaling and the reason
for their selection

The high-resolution downscaled climate simulations available at the time of publication were
only for the RCP8.5 scenario. This scenario is useful as at the time of publication, it is the
scenario most representative of trajectory the Earth is following based on social, economic
and political actions and achievements as of 2019. Moving forward, if action to mitigate the
impacts of climate change are successful, such that the Earth follows a scenario more similar
to RCP6.0 (or at best RCP4.5), the RCP8.5 scenario provides a worst case scenario for risk
managers to test future strategies against, while also being inclusive of the projected impacts
of lower emissions scenarios.

Description of the regional climate modelling approach

To develop high-resolution climate simulations for South East Australia, we used the Confor-
mal Cubic Atmospheric Model (CCAM) developed at CSIRO (McGregor 2005 and McGregor
and Dix 2008). Unlike most RCMs, CCAM is a global atmospheric model with a variable
resolution grid that can be focused over an area of interest. In this way, CCAM can generate
a higher resolution climate simulation, but is still coupled to the larger scale atmospheric
circulation. Formally CCAM is a stretched grid global model, but we will refer to CCAM as
an RCM in this atlas. CCAM includes several sub-models that are useful for simulating the
Australian climate, including:

� direct and indirect aerosol feedbacks (Boucher et al., 2013)

� gravity wave drag (Chouinard et al., 1986)

� convection (McGregor, 2003)

� cloud microphysics (Lin et al., 1983; Rotstayn et al., 1997)

� radiation (Schwarzkopf and Ramaswamy, 1999; Freidenreich and Ramaswamy, 1999)

� aerosols (Rotstayn and Lohmann, 2002; Rotstayn et al., 2011; Horowitz et al. 2017)

� boundary layer turbulent mixing (McGregor, 1993)

� the Australian developed Community Atmospheric Biosphere Land Exchange (CABLE)
land-surface and carbon cycle model (Kowalczyk, 2013),

� the Urban Climate and Energy Model (UCLEM) for Australian cities (Lipson, et al.,
2018)

CCAM has been used for several regional climate simulations in Australia and South East
Asia, including the CORDEX intercomparison experiment, the National Resource Manage-
ment (NRM) national projections for Australia, the Climate Futures for Tasmania, Climate
projections for the Australian Alps and High-resolution projections for Queensland.

The downscaling process used by CCAM for the high-resolution climate simulations involves
two stages. The first stage involves taking the projected changes in the Sea Surface Tempera-
tures (SSTs) from the GCMs, correcting the biases and variance on a month-by-month basis
relative to the observed SSTs from 1980–2010 (Hoffman et al 2016). The CCAM model is then
used to rebuild the atmosphere at a uniformly global 50km resolution consistent with the cor-
rected SSTs. This removes the first order errors that are present in the GCM output and helps
to simulate a more realistic present day climate. The second stage is to then downscale the
50km CCAM simulations to 5km resolution (centred over Victoria) using CCAM’s stretched
grid and scale-selective filters (Thatcher and McGregor 2009). Underlying model resolution
is described in Figure ??. This approach ensures that the regional 5km resolution simulation
is consistent with the large-scale behaviour of the global 50km resolution simulation, but also
allows CCAM to add additional information such as extreme events. It is important to note
that the SST bias correction process retains the amount of warming represented in the SSTs
but can allow CCAM to modify the projections of the GCMs in other respects (such as changes
in mean sea level pressure or rainfall). When analysing the CCAM projections it can be useful
to separate the regional-scale changes, the large-scale changes and the differences between the
GCM projections so that the processes that explain the changes can be better understood.

The CFAP2019 ensemble were designed to balance competing needs of finer resolution, larger
ensembles of downscaled host GCMs and additional emission scenarios. By simulating the
climate at these scales, we can expect to better resolve mountains, coastlines and urban areas.
We can also expect to better simulate extreme rainfall events that may lead to flooding. The
running of new simulations is computationally intensive, so new fine-scale projections were
only done for south eastern Australia and Tasmania, where the greatest added value would

be achieved over the mountains and coastlines. For Western Australian regions (and South
Burnett in Queensland), we investigated the usefulness of using dynamically downscaled simu-
lations available from other archives, particularly those produced over the south west western
Australia. We compared these archives for compatibility with the key archive we have used
for the south-eastern Australian regions with regards to spatial resolution, available variables
and both spatial and temporal domain (coverage). In order to be consistent with the rest of
Australia, these alternative archives required continuous temporal coverage from the 1960s to
2100. Unfortunately alternative archives investigated were not continuous. This introduced
confusion when visualising many of the outputs, and thus could not be used. An alternative
approach was adopted that made use of the 50km resolution CFAP2019 ensemble outputs, as
this model domain was global, which had coverage over all other Australian regions. However,
this coarse resolution provided limited value when investigating the small wine regions. In
order to transform the 50km outputs into more valuable forms, these were statistically down-
scaled to 5km resolution (using a quantile-quantile bias adjustment method Gudmundsson et
al. 2013), based on the Australian Gridded Climate Data product. This produced far more
useful, reasonable representations of the regions of interest to the project, providing the best
continuous estimates currently available of climatic changes into the future.

Figure 1: The domains of the CFAP2019 ensemble showing the different resolutions
across Australia, ranging from 5km to 50km.

The CCAM model was configured for 35 vertical levels ranging from 20m to 40km in height,
with more vertical levels concentrated in the lower portion of the atmosphere. Near surface
variables (e.g., 2m air temperature or 10m winds) are calculated in the usual way based on
Monin-Obukhov Similarity Theory (MOST). Essentially the near surface data is estimated
from interpolating between the first atmospheric level and the surface, with the weighting of
the interpolate dependent on the stability of the atmosphere near the surface (i.e., is air rising
due to the surface being warmer than the air above it, causing mixing of the air). The CCAM
downscaling process is divided into two stages. CCAM simulations are run from 1960 to 2100
for all six GCMs as well as downscaling ERA-Interim reanalyses. ERA-Interim reanalyses
represent data sets where observations were assimilated into the atmospheric modelling. As
a result, the ERA-Interim data corresponds to the observed weather from 1979 to 2015, al-
though with the atmospheric simulation interpolating gaps in the observations. In this way,
we can consider ERA-Interim is a useful reference experiment for downscaling the current
climate that avoids errors that can arise in GCM simulations.
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Description of the regional climate modelling approach

Bias adjustment

Model biases introduce systematic errors which vary from place to place, as these errors are
heavily dependent on the topography, altitude, latitude and distance from large water bodies.
The biases are due to insufficient spatial resolution and the subsequent limited representation
of meteorological processes (Rauscher et al. 2010). This is not a problem when investigating
climate change as the interest is on the relative changes over time rather than the absolute
values. However, when looking at climate impacts, the absolute values are needed, particularly
when investigating temperature extremes. Therefore, in order to make the atlas more useful,
there was a need to statistically bias adjusted the CCAM model outputs prior to climate
impact assessment (Christensen et al., 2008).

Bias adjustment is a statistical method that adjusts the climate model output so that it
matches the observations over the entire probability distribution. This adjustment is then
applied to each quantile of the probability distribution into the future period, preserving
any changes to the distribution projected by the climate models. The raw CFAP2019 en-
semble outputs were bias-adjusted using the quantile statistical transformation, which has
been widely used for adjusting modelled variables, especially temperature and rainfall (Gud-
mundsson et al., 2013). Temperature and rainfall were bias adjusted using the qmap package
(Gudmundsson et al., 2013) within the R programming language. Specific parameter settings
were: method = quant; qstep = 0.001 ; wet.day = FALSE for Temperature and TRUE for
rainfall. Observation data inputs were from the Australian Gridded Climate Data product
(Jones et al., 2009).

An example of the impact bias adjustment can have on the distribution of values is presented
in Figure 2. The probability distribution of the model output has been adjusted such that it
reflects the distribution of observed values.

Figure 2: Probability distributions of maximum daily temperature at screen height (2m
above the surface) for the period 1961-1990, for different data archives, dis-
played for the example wine regions Hunter and Tasmania South East. Ob-
served data is sourced from AGCD. Only a single example ensemble member
from CFAP2019 is displayed (CNRM-CERFACS-CNRM-CM5), similar im-
pacts are observed when bias-adjusting the other ensemble members. The
black solid thin lines are the observations. The purple dashed lines are the
raw CFAP2019 output. The orange dashed lines are bias-adjusted CFAP2019
output. Note how the bias-adjusted CFAP2019 distributions (orange dashed
lines) closely resemble the observed distributions (black thin solid line).

Time periods

Time periods were calculated based on Australian growing years, which are the period from
July to June each annual cycle, winter to winter in the Southern Hemisphere. Growing years
were labelled as the calendar year in which July fell. Time periods used within this atlas are
defined as:

Time period Start and end month

1961–1990 July 1961 to June 1991

1997–2017 July 1997 to June 2018

2001–2020 July 2001 to June 2021

2021–2040 July 2021 to June 2041

2041–2060 July 2041 to June 2061

2061–2080 July 2061 to June 2081

2081–2100 July 2081 to June 21001

Table 2: Start and end months for each time period

Wine Regions / Geographic Indications (GIs)

The terms Wine Regions and Geographic Indications (or GIs) are used interchangeably
throughout this atlas. They are determined, registered, managed and curated by Wine Aus-
tralia (Wine Australia, 2019). Shapefiles of all wine regions were provided by Wine Australia.

1this period is 19 years (instead of 20 years like the others) due to an absence of available data past December 2100
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Temperature

Evaluation of the CFAP2019 ensemble

The following section evaluates the CFAP2019 ensemble for the period 1986–2005 by com-
paring the results to observations. In this section we use the Australian Gridded Climate
Data products (AGCD), which were produced by the Australian Water Availability Project
(AWAP), a collaborative effort of CSIRO and the Bureau of Meteorology (BoM). These are
national gridded data sets at 5km resolution of observed daily rainfall and daily maximum and
minimum air temperature at 2m. AGCD data is based on interpolated weather station mea-
surements and hence there are some gaps where the station network is less densely populated
(e.g., in the Victorian Alps). We also used ERA-Interim reanalyses for evaluating the larger-
scale performance of the CFAP2019 ensemble such as mean sea level or winds at 850 hPa. The
ERA-Interim reanalysis is a combination of model simulations and observations. As such, it is
a reconstruction of the weather through time, providing information about surface conditions
(e.g., temperature, precipitation, wind speed and direction, humidity, evaporation and soil
moisture), information at pressure and model levels, and information on solar radiation and
cloud cover. It provides a reasonably accurate representation of past weather over a number
of years, so is valuable to validate the model output over the same time period. The Bureau of
Meteorology Australian Regional Reanalysis for Australia (BARRA) was under development
at the time of atlas development and publication, so was not yet available.

The region of Victoria was used to assess the capability of the model because it covers a large
number of the Australian wine regions and has a range of climate zones (coastal, open plains,
low elevation hills through to high elevation alpine mountains).

Temperature

The CFAP2019 ensemble variables average daily maximum and minimum air temperature (at
2m, i.e. screen temperatures) between 1986–2005 are compared to the AGCD interpolated
observations and the host GCM models in Figures 3 and 4. The ensemble mean for CFAP2019
ensemble and six host GCMs are presented. The results indicate that CFAP2019 ensemble
better represents the temperatures for mountain regions and coastlines than the GCMs when
compared to AGCD. The CFAP2019 ensemble also show a significant improvement (compared
to the host GCMs) in daily minimum temperature, as well as much better representation of
colder daily minimum temperatures for alpine regions of Victoria. The host GCMs tend to
show a warm bias in the daily minimum temperatures over Victoria that is not apparent in the
CFAP2019 ensemble. However, for maximum temperatures there is a warm bias apparent in
the CFAP2019 ensemble in summer, particularly for eastern Victoria. The spatial pattern of
this warm bias is not apparent in the future projected change in daily maximum temperature,
suggesting that the issue is related to the diagnoses of the 2m air temperature for tall vegeta-
tion (e.g., forests). Some caution is therefore advised in interpreting the projected changes in
climate for daily maximum temperatures within or nearby forested regions.

Another example of how the CFAP2019 ensemble has improved the daily minimum temper-
ature can be see by examining the Urban Heat Island (UHI) for Melbourne. Urban areas
result in an increased daily minimum temperature compared to the surrounding natural veg-
etation of typically 1°to 2°C, depending on the density of the urban area and the amount of
green space. Urban areas are generally poorly resolved in GCMs. However, regional models
like CCAM include special parameterisations to account for the building materials, urban
drainage, shadowing effects and changes to air circulation within the urban canyon. Figure 5
compares the difference in daily minimum temperature between an inner-city weather station
(BoM Melbourne regional office) and three outer city locations (Laverton RAAF, Coldstream
and Cranbourne Botanic Gardens) between 1986–2005. Weather stations show that average
daily minimum temperatures at Laverton RAAF, Cranbourne Botanic Gardens and Cold-
stream are approximately 2°C, 2°C and 4°C, cooler than the inner-city site. Figure 5 shows
that the CFAP2019 ensemble better represents this difference in daily minimum temperatures
due to the UHI, correctly projecting a 2°C difference between the inner-city and Laverton and
Cranbourne sites (although the CFAP2019 ensemble is still slightly too warm at the Cold-
stream site). In comparison, the GCM results do not simulate any change in daily minimum
temperature between the inner-city and outer-city locations.

Figure 3: Comparison of average daily maximum 2m air temperature between 1986–2005
between AGCD interpolated observations (left column), CCAM 5km resolu-
tion simulation (middle column) and host GCM (right column). The CCAM
and GCM results are averaged over the six GCMs used for downscaling. The
rows from top to bottom correspond to December-January-February (DJF),
March-April-May (MAM), June-July-August (JJA) and September-October-
November (SON), respectively.

Figure 4: Comparison of the daily minimum 2m air temperature between 1986–2005 for
AGCD (left column), CCAM averaged over the six downscaled simulations
(middle column) and the average of the six host GCMs (right column). The
rows from top to bottom correspond to December-January-February (DJF),
March-April-May (MAM), June-July-August (JJA) and September-October-
November (SON), respectively.

Figure 5: Comparison of the Urban Heat Island (UHI) measured as the difference in
average daily minimum temperature over 1986–2005 between an inner-city
weather station (BoM Melbourne Regional Office — Red dot) and three outer-
city weather stations (Laverton RAAF — Blue dot, Coldstream - Green dot
and Cranbourne Botanic Gardens — Yellow dot). Location of the weather
stations are shown in the top plot and the observed and simulated difference
in temperatures between the inner-city site and the three outer city sites is
shown in the bottom plot.
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Mean Sea Level Pressure and 850 hPa winds

Rainfall

A comparison of the average rainfall simulated for different seasons from 1986–2005 by CCAM
with AGCD interpolated observations and the host GCMs can be seen in Figure 6. The CCAM
5km resolution simulations better represent the average rainfall over the Victorian Alps than
the GCMs where the mountains are poorly resolved. CCAM also represents increased rainfall
along the southern coastline that was not represented by the GCM simulations. The simulated
average rainfall from the CCAM 5km resolution simulations is higher than what is measured
for the AGCD interpolated observations. However, the AGCD interpolated observations can
also underestimate the rainfall in mountain regions due to a more sparse network of observing
stations. The larger scale features in the CCAM simulated rainfall resemble some of the larger
scale features in the GCM simulations (e.g., a slightly higher average rainfall in the north
west of Victoria in summer and autumn), which reflects some similarities in how rainfall is
parameterised in global and regional dynamical climate models. Nevertheless, downscaling
does improve the distribution of simulated average rainfall, demonstrated in the CCAM 5km
simulations.

Extreme rainfall

Another aspect where downscaling should improve the simulated climate is extreme rainfall.
We used the 99th percentile of daily rainfall over the 1986–2005 period as an indicator of
CCAM’s ability to represent extreme rainfall. A comparison of the 99th percentile of daily
rainfall between 1986–2005 for AGCD, CCAM and the GCMS is shown in Figure 7. The
extreme rainfall is overestimated by CCAM when compared to AGCD interpolated observa-
tions, although CCAM significantly improves on the extreme rainfall from the GCMs which
do not represent the high rainfall for the Alpine regions at all. As for average daily rainfall,
the AGCD interpolated observations may underestimate the size of the extreme rainfall for
mountain regions due to the sparse observing network, which is also suggested by comparing
the results to BARRA (not shown). Nevertheless, CCAM is able to represent extreme rainfall
that could not be captured in the GCM simulations.

Mean Sea Level Pressure and 850 hPa winds

Although the use of CCAM simulations is primarily for downscaling the regional climate, it
is also important to consider the large-scale behaviour of the CCAM atmospheric simulation.
This large-scale behaviour can influence the projections of the climate model simulations and
is useful for interpreting the outputs of CCAM in the context of the ensemble of CMIP5 GCM
projections. As discussed when describing CCAM, the use of bias corrected SSTs can allow
CCAM to differ from the host GCM in some respects.

Figure 8 compares the simulated Mean Sea Level Pressure (MSLP) averaged between 1986–
2005 from the six CCAM 50km global simulations with the ERA-Interim reanalyses and the
average of the six host GCMs. When compared to ERA-Interim, the CCAM 50km simulations
are somewhat biased towards eastwards flow in the MSLP compared to the host GCMs, most
noticeable in autumn and winter. This can lead to winds too easterly as indicated with the
850 hPa winds shown in Figure 9. Figure 9 compares the average 850 hPa wind speed and di-
rection for different seasons over 1986–2005 between the ERA-Interim reanalyses, the average
of the six CCAM 50km global simulations and the average of the six host GCMs. The 850 hPa
winds represent the winds at approximately 1 to 1.5km above the surface, where ERA-Interim
is less influenced by smaller scale mountains. Although the CCAM simulations are a reason-
ably good representation of the 850 hPa winds, the wind speed is too strong and the wind
direction is too zonal in autumn and winter. This result is consistent with the easterly bias
within MSLP results for those seasons. The CCAM simulation results are still a reasonable
representation of the global climate and the projected future changes in climate are physically
reasonable. Nevertheless, we can expect some differences in the larger scale changes projected
by the CCAM simulations compared to the host GCMs.

Figure 6: Comparison of daily average rainfall from 1986–2005 between AGCD inter-
polated observations (left column), the average of six CCAM 5km simula-
tions (middle column) and the average of the six host GCMS (right column).
The rows indicate different seasons with top to bottom showing December-
January-February (DJF), March-April-May (MAM), June-July-August (JJA)
and September-October-November (SON), respectively.

Figure 7: Comparison of the 99th percentile of daily rainfall between 1986 and 2005
from AGCD interpolated observations (left column), the average of six CCAM
simulations (middle column) and the average of six GCMs (right column).
The rows indicate different seasons with December-January-February (DJF),
March-April-May (MAM), June-July-August (JJA) and September-October-
November (SON).

Figure 8: Comparison of Mean Sea Level Pressure averaged over 1986–2005 between ERA-Interim
reanalyses (left column), the average of the six CCAM 50km global simulations (middle
column) and the average of the six host GCMs (right column). The rows indicate different
seasons with December-January-February (DJF), March-April-May (MAM), June-July-
August (JJA) and September-October-November (SON).

Figure 9: Comparison of average wind speed and direction at 850 hPa (approximately 1 to 1.5km
above the surface) between 1986–2005. The ERA-Interim reanalysis is shown on the left
column, the average of the six CCAM 50km simulations in the middle column and the
average of the six GCMs on the right column. The rows indicate different seasons for
December-January-February (DJF), March-April-May (MAM), June-July-August (JJA)
and September-October-November (SON).

52

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE

PR
E-R

EL
EA
SE



Australia’s Wine Future — A Climate Atlas
METHODS AND INTERPRETATION

Heat

Methods and interpretation of figures

Infographic

Each regional section of the atlas starts with an infographic page that summarises the future
changes in climate in general terms. This section describes the methods used to calculate each
index.

Interpretation:

These infographics provide a snapshot of the projected climate across each region at dif-
ferent time periods. Values are summarised across space and time, so they give a good
overall indication of change across the region, but may be less useful when interested in
exact conditions at specific sites. These summaries enable easy and rapid comparisons
between regions, or across time periods, in a broad, general sense.

Data sources

Values for the 1997–2017 (the current period) were calculated using the Australian Gridded
Climate Data product (Jones et al., 2009).

Values for the time periods 2041–2060 and 2081–2100 were calculated from the Climate Fu-
tures Australasian Projections 2019 (CFAP2019), produced collaboratively by the CSIRO, the
ACECRC and the University of Tasmania.

Mean values

Mean values are the spatial and temporal average of the target variable within a specific
time-period, across all grid cells within each wine industry Australian Geographical Indica-
tions (Wine Australia, 2019). For example, the mean GST value for the period 2041–2060
for the Barossa Valley is an average of 260 input values (13 grid-cells x 20 annual timesteps),
summarised into a single value.

Interpretation:

Values are presented for selected 20-year periods representing the:

� current period (1997–2017) — reflecting recent memory;

� the mid-term future (2041–2060) — the high-likelihood future expected by 2050
(before which RCP scenarios are similar and after which they begin to diverge),
this period is most relevant to strategic decision making; and the

� far future (2081–2100) — providing a quantitative estimate of changes by the end
of century (following the worst case scenario).

The three time periods indicate the rate of adaptation that may be required over the next
20 or 40 years while providing context to help guide planning over a longer time frame.

Temperature

Growing Season Temperature (GST) is defined as the mean atmospheric temperature at screen
height (2m above the land surface) over the period from October to April of each annual cycle.
This is calculated for every growing season year, for every grid-cell within the region. Annual
values from all grid-cells and all annual timesteps are averaged.

Interpretation:

Growing Season Temperature (GST) increases into the future for every region across
Australia. The rate of increase accelerates exponentially towards 2100. Values are sum-
marised over space and time, so for regions with high topographic variability, average
values are unlikely to reflect conditions at specific sites within the wine region, although
they will give a reasonable indication of the direction and rate of change projected into
the future.

Extreme Heat

Excess Heat Factor (EHF) is an index that describes the severity of short term, acute heat
impacts on humans during heat waves. It accounts for how hot any three-day period is in
relation to an annual temperature threshold at a particular location, as well as how hot the
three-day period is with respect to the recent past (the previous 30 days). This reflects the
fact that people acclimatise, to a certain extent, to their local climate but may not be prepared
for a sudden rise in temperature above that of the recent past.

The calculation is described in Nairn and Fawcett (2015). Annual values from all grid-cells
and all annual timesteps are averaged.

Interpretation:

Excess Heat Factor (EHF) represents the intensity of heatwaves within a region as experi-
enced by humans, after accounting for any capacity to acclimatise to the typical conditions
within a region. Increasing EHF rates indicate more intense heatwaves. As heatwaves
are large synoptic scale features, regional variability is less influential than longer term
climatic changes.

Aridity Index

The Aridity Index provides an indication of available water by considering the magnitude
of precipitation compared to the magnitude of evaporation. This is calculated as annual
precipitation / annual pan evaporation. The aridity index is independent of site specific char-
acteristics (e.g., soil type, vine varietal) or changes in vineyard management (e.g., shading,
row orientation, mulching), but captures elevation, aspect, humidity and the influence of wind.
Annual values from all grid cells and all annual timesteps are averaged.

The annual cycle was defined as July to June, which is winter to winter in the southern hemi-
sphere. Annual precipitation is the sum of all rainfall that has fallen within a single grid cell
within the period July to June of each annual cycle. Annual pan evaporation is the sum of
all evaporation that could occur if water was always present within a grid-cell over the pe-
riod July to June of each annual cycle. This follows the approach from numerous published
methods that have all devised similar (yet slightly different) methods of estimating aridity
by dividing a measure of rainfall by a measure of evaporation (or similar variables such as
evapotranspiration, potential evaporation, etc.) (Transeau, 1905; Vyssotsky, 1905; Oldekop,
1911; Thornthwaite, 1931; Ivanova, 1941; Kostin, 1952; Hargreaves, 1971; UNESCO, 1979;
Sarker and Biwas, 1980).

Interpretation:

The Aridity Index (AI) reflects the difference between evaporation and rainfall over the
year. High (low) values indicate more (less) rainfall than evaporation. In a rapidly
warming climate, evaporation rates increase substantially, so in order to maintain simi-
lar AI values rainfall must increase sufficiently to offset evaporative losses. Temperature
increases have high certainty, thus evaporation increases are also highly certain. There
are few places (globally) where rainfall is projected to increase at a rate fast enough to
maintain AI values at their current levels. Therefore AI is expected to decrease in all
wine regions across Australia. Values are summarised over space and time, so for regions
with high topographic variability, average values are unlikely to reflect conditions at spe-
cific sites within the wine region, although they will give a reasonable indication of the
direction and rate of change projected into the future.

Extreme Cold

Mean Growing Season Frost Risk Days is the number of days within the period from October
to April of each annual cycle where temperatures are <2°C. Annual values from all grid cells
and all annual timesteps are averaged.

Interpretation:

Mean Growing Season Frost Risk Days are projected to decrease in all wine regions across
Australia as temperatures continue to rise. Values are summarised over space and time.
For regions with high elevations within the wine regions, average values will be higher
(lower) than those expected in the lowlands (highlands).

Rainfall

Mean Growing Season Rainfall is the average sum of all precipitation that falls within the
period from October to April of each annual cycle. Annual values from all grid cells and all
annual timesteps are averaged.

Interpretation:

Rainfall is one of the most uncertain components within the climate system. However,
even modest increases in annual rainfall can actually result in decreased moisture avail-
ability across a region within a warming climate, as rainfall rates are required to increase
in order to offset evaporative (and other) losses (see Aridity Index sections). Confidence
in temperature, the warming trend and evaporative demands is high. Thus, although
confidence surrounding rainfall projections is low, very few simulations indicate increases
in rainfall with sufficient magnitude to offset these projected losses. Rainfall should be
viewed in concert with Aridity Index projections.

Heat

Interpretation:

We have high confidence in how temperature will change into the future (depending on
the emissions scenario). The physical drivers of how it changes within the climate system
are well understood, are valid across large spatial scales and are therefore straightforward
to represent within climate models. This allows the models to achieve high levels of skill
in the predictions (weather forecasts) and projections (climate projections) they produce.

There is strong agreement across the CFAP2019 ensemble members regarding the rate
and magnitude of warming projected into the future. As such, there is high confidence
regarding projected variables related to temperature.

Each ensemble member describes a possible future, with different timing and sequencing
of broad global drivers (such as the Southern Annular Mode (SAM), the El Niño Southern
Oscillation (ENSO) and the Indian Ocean Dipole (IOD) ). As such, hot or cold years can
be out of phase with each other. This is a strength of an ensemble mean as the highs
and lows (expressions of the natural variability within the climate system) are smoothed
out, revealing the general climate trend. For some regions, variability between the dif-
ferent ensemble members is lower than the variability that occurs spatially across a wine
region. This is especially true for those regions with significant hills or mountains (e.g.,
Barossa Valley, Tasmania East Coast). For regions that are more uniform spatially (e.g.,
Riverland), the ensemble variability is more noticeable, expressed as clusters of points
that escape the point cloud in some years. These high and low years are useful for under-
standing the likelihood of extremely hot or cold years over time. Often, the extremely hot
years are indicative of the conditions to expect in the future. For example, the hot year
(along with the associated extreme daily temperatures) observed in south east Australia
during the 2015/2016 growing year is indicative of typical projected conditions in 2050.
Similarly, cooler conditions (relative to the surrounding decades) can occur at any time
(although even the coldest year by the end of century would be considered an average
year today).

The trend lines highlight how typical conditions are projected to change over time —
they are representative of the ensemble mean at warmer and cooler locations within the
region. It is most interesting to determine when the cooler location becomes hotter than
the warmer location (typically around 2030, depending on the region and the magnitude
of spatial variability). It is important to note that interannual and decadal variability is
present, but the trend is clearly warming, especially from 2020 onwards.
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Figure 1: Observed mean Growing Season Temperature

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

Daily average temperature is calculated as the mean of daily maximum and minimum tem-
peratures each day. Growing Season Temperature (GST) was calculated as the average of
all daily average temperature values for each day within the period from October to April of
each growing season year. Mean Growing Season Temperature is the average of all annual
GST values over the current period (1997–2017). Grid cells selected were those within (or
intersecting with the boundary of) the polygon that defined each wine industry Australian
Geographical Indications (Wine Australia, 2019). Values were calculated for each grid cell.

Interpretation:

Each tile represents the mean Growing Season Temperature during the period 1997–2017,
(which is the period of recent memory). This map reflects the level of variability across
the region as it is currently experienced. Tiles are the resolution of the underlying data.
Lower values typically correspond to higher elevation regions. Towns and roads are in-
cluded to help identify specific sites within the region. Tiles have an average elevation
of the area they represent, so they best represent regions that have similar elevations
(±200m) across 5–10km2 scales. Typically, the highest peaks occur at smaller scales
(~1km2) and thus are poorly represented. This can influence the representation of some
climatic features and should be considered when interpreting these figures.

Figure 2: Observed change in mean Growing Season Temperature

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

Growing Season Temperature (GST) was calculated as the average of all minimum and maxi-
mum temperature values for each day within the period from October to April of each growing
season year. Mean Growing Season Temperature is the average of all annual GST values over
the current period (1997–2017), or the baseline period (1961–1990). The baseline period mean
GST was then subtracted from the current period mean GST, resulting in the observed change
in mean GST. Grid cells selected were those within (or intersecting with the boundary of) the
polygon that defined each wine industry Australian Geographical Indications (Wine Australia,
2019). Values were calculated for each grid cell.

Interpretation:

Each tile represents how mean Growing Season Temperature during the current period
(1997–2017) has changed when compared to mean Growing Season Temperature during
the historical period (1961–1990). Climate change is a large scale feature, so the level of
change observed is relatively similar when viewed at local scales. Towns and roads are
included to help identify specific sites within the region. Tiles have an average elevation
of the area they represent, so they best represent regions that have similar elevations
(±200m) across 5–10km2 scales. Typically, the highest peaks occur at smaller scales
(~1km2) and thus are poorly represented. This can influence the representation of some
climatic features and should be considered when interpreting these figures.

Figure 3: Projected mean Growing Season Temperature

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Growing Season Temperature (GST) was calculated as the average of all minimum and maxi-
mum temperature values for each day within the period from October to April of each growing
season year for each member within the CCAM ensemble. Grid cells selected were those within
(or intersecting with the boundary of) the polygon that defined each wine industry Australian
Geographical Indications (Wine Australia, 2019). Values were calculated for each grid cell.
Mean Growing Season Temperature is the average of all annual GST values within each time
period (2021–2040; 2041–2060; 2061–2080; 2081–2100). These were calculated for each ensem-
ble member within the CFAP2019. The 6 ensemble member values (for each cell) are averaged
generating the ensemble mean for each cell within the region.

Interpretation:

Each tile represents the mean Growing Season Temperature during each 20-year period
of 2021–2040, 2041–2060, 2061–2080, 2081–2100 (following the RCP8.5 scenario). These
reflect the level of variability across the region, and the rate of change projected into the
future. Tiles are the resolution of the underlying data. Lower values typically correspond
to higher elevation regions. Tiles have an average elevation of the area they represent, so
they best represent regions that have similar elevations (±200m) across 5–10km2 scales.
Typically, the highest peaks occur at smaller scales (~1km2) and thus are poorly repre-
sented. This can influence the representation of some climatic features and should be
considered when interpreting these figures.

Figure 4: Projected annual Growing Season Temperature

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Blue points: Growing Season Temperature (GST) was calculated as the average of all mini-
mum and maximum temperature values for each day within the period from October to April
of each growing season year for each member within the CCAM ensemble. Grid cells selected
were those within (or intersecting with the boundary of) the polygon that defined each wine
industry Australian Geographical Indications (Wine Australia, 2019). Values were calculated
for each grid cell.

Solid lines: The solid lines are annual time series of the ensemble mean for a single grid cell.
Each solid line represents either a warmer location or a cooler location relative to the rest
of the region. These locations were selected based on observed mean GST values, calculated
from the Australian Gridded Climate Data product (Jones, et al., 2009) for the current pe-
riod (1997–2017). The warmer location (cooler location) is a grid cell that represents the 80th

(20th) percentile of all mean GST values across the region. The 20th and 80th percentile thresh-
olds were selected so that typical subregions where highlighted, rather than high elevations,
coastlines or particularly warm grid cells (or subregions in the larger wine regions).

Grey Bars: The grey bars represent the observed mean GST for the current period (1997–
2017) from contrasting wine industry Australian Geographical Indications (Wine Australia,
2019). Values were averaged across space and time, calculated from the Australian Gridded
Climate Data product (Jones, et al., 2009).

Coloured zones: The coloured zones indicate the time when average global climate temper-
ature increases by 1°C, 2°C, 3°C or 4°C, following the Representative Concentration Pathway
8.5 scenario (RCP8.5, often referred to as the business as usual scenario). These estimates
are the ensemble means as reported by the Intergovernmental Panel on Climate Change Fifth
Assessment Report (IPCC-AR5), based on the World Climate Research Programme (WCRP)
Coupled Model Intercomparison Project - phase 5 (CMIP5) global climate model archive
(which has >100 ensemble members).

Interpretation:

Key elements:

� There is a strong warming trend, with a rate of change that increases towards the
end of the century.

� All ensemble members agree so there is high confidence in the direction and mag-
nitude of the projected future following the RCP8.5 scenario.

� Extremely hot years (representative of mean conditions in the future), can occur as
much as 30 years earlier than projected by the mean trend.

� The pathways exhibited by different ensemble members (hotter vs warmer, which
in some regions are obvious) are all plausible potential futures.

� Lines represent ensemble means (extreme years have been smoothed away), repre-
senting the average changes projected into the future.

Each point represents the annual Growing Season Temperature for individual grid cells
within the region for each separate CFAP2019 ensemble member. For each year, the
spread of points represents the spatial variability as well as the variability across the
ensemble members. From 1961 to around 2000, interannual and decadal variability dom-
inate the changes seen in climate trends.

(continued)

After 2000 the influence of climate change emerges, becoming clearly important by 2020.
From 2020 to 2100 climate change becomes progressively more influential than natural
variability.

Solid lines indicate the average direction of change for a single location into the future.
These lines are the ensemble mean. These are intended to highlight that the cloud of
points is created in part by the range of conditions across the region. Users are expected
to know if they are within the warmer, average or cooler part of their region and thus can
infer where they are likely to sit within the point cloud, allowing them to extract more
detail from these figures. Because these lines are the ensemble mean (the average of 6
values), extreme years have been smoothed out. To get a feel for the influence of extreme
events, the peaks and troughs indicated by the points are more helpful.

The grey bars are the regional average for contrasting GIs across Australia. They do not
represent the regional variability within each of those GIs, but are intended to provide
approximate climate analogues to aid interpretation.

The coloured zones are intended to be used independently of the Growing Year (July to
June) axis, allowing decisions to be made based on the expected magnitude of global
warming (such as those national governments are committed to within the Paris Agree-
ments), rather than being based on the passage of time. This allows these plots to be
useful regardless of the emissions scenario the world eventually follows.

Figure 5: Probability distribution of Growing Season Temperature

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Growing Season Temperature (GST) was calculated as the average of all minimum and maxi-
mum temperature values for each day within the period from October to April of each growing
season year for each member within the CCAM ensemble. Values were calculated for each cell.
Grid cells selected were those within (or intersecting with the boundary of) the polygon that
defined each wine region’s Geographical Indications (Wine Australia, 2019).

The curves represent the distribution of GST values from all grid cells and all ensemble mem-
bers during each different 20-year period. Time periods were: 2001–2020; 2021–2040; 2041–
2060; 2061–2080; 2081–2100.

The grey, filled curves represent the distribution of observed GST values for contrasting Aus-
tralian regions for the current period (1997–2017).

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Low, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial and temporal scales as well as across the CFAP2019 ensemble is represented with
each curve. This has the advantage of reflecting the diversity that is found within each
wine region (cooler vs warmer subregions) and across different types of years (e.g., hot,
average or cold). Different ensemble members capture different climate configurations
(e.g., El Niño, neutral, or La Niña phases of ENSO), thus better estimate the range of
possible extremes. Low likelihood years (extreme hot or cold) can be included, indicating
what is possible, while simultaneously representing the expected or typical conditions
for a particular region. Curves with multiple peaks indicate either strong, stable spatial
differences (highland vs lowlands conditions), or a strong modal character of the regions
climate (e.g., a region is either has very warm years, or very cold years but rarely is in
between). The different coloured curves indicate how conditions are expected to change
into the future. As the curves are all distinct and the direction of change across the
five time-periods is consistent, this indicates all ensemble members agree on the rate and
direction of warming into the future. The future curves are typically lower and broader
as different simulations follow different trajectories, increasing the variability within the
population of values.
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(continued)

The grey curves are the probability distribution for contrasting Australian wine regions,
selected to present the range observed across Australia, and indicate the approximate
analogues a region may become similar to into the future. These grey curves are calcu-
lated using the Australian Gridded Climate Data product from the period 1997–2017.
The coloured curves are calculated using the bias-adjusted CFAP2019 ensemble during
the period 2001–2020. As there are differences between these two archives, the 2001–2020
curves for these selected regions are slightly different to the grey curves. These differences
are expected.

Growing Degree Days

Growing Degree Days calculations are not standardised across Australia. Growers within each
GI often have their own adaptation either for their vineyard or across their region. As such,
GDD means different things to different people and the values are not interchangeable. For
this atlas, we selected a method to calculate GDD that was standardised, relevant and useful
across Australia. The two main limitations of existing methods were: 1) limiting the period
where heat is accumulated to after October — this does not account for the effect of warm
winter/spring periods, increasingly important under a warming climate; 2) limiting the influ-
ence of heat to daily values >10°C — this does not account for physiological responses that
clearly occur at far lower temperatures, especially during the winter/spring period.

In response to these limitations, we established a new method to use daily climate values as
inputs, take into account the influence of heat across the entire growing year (July to June)
and reflect the physiological demands of grape vines as they change throughout the year. The
method is simple enough to implement (and adjust) at the vineyard scale where required (by
users external to the atlas) and remains relevant into warmer future conditions. The approach
captures the importance of increased heat accumulation prior to October as the climate warms,
providing a better representation of the impacts expected to be seen into the future, while
also improving the utility of the GDD metric as a measure of heat accumulation within cooler
climates (or cooler seasons) as it better reflects the influence of low temperature days relevant
to grape-vine phenology.

Method description

Growing Degree Day values for each day are calculated using this (standard) equation:

GDD = max(
Tmax + Tmin

2
− Tbase, 0)

Where: GDD = Growing Degree Days ; Tmax = Maximum daily temperature; Tmin = Mini-
mum daily temperature; Tbase = the temperature threshold above which heat is considered of
value to the vines.

The value of Tbase is altered for three different phenological stages: dormancy to budbreak,
budbreak to leaf appearance, leaf appearance to harvest (or end of season), reflecting the phys-
iological requirements of grape vines during these different periods of growth. We used the
values determined by Moncur et al. (1989) and account for the most significant varieties cul-
tivated in Australia, Tbase for each phenological stage is set as: Tbase = 4°C from July 1st until
budbreak ; Tbase = 7°C from budbreak until leaf appearance; Tbase = 10°C from leaf appearance
until June 30th.

The value of this adaptation is the additional information it provides earlier in the season,
especially the influence of colder days, which are particularly important within cooler climate
regions. However, in order to implement this approach, accumulated GDD values that indicate
when each threshold has been reached are required such that the timing of these trigger points
within each year can be estimated. Given that cool climate varietals are more likely to be
sensitive to this method than those suited to warmer climates, the thresholds were estimated
using data presented by Moncur et al. (1989). Thus, the above transition points for Tbase as
defined by accumulated GDD thresholds were: budbreak = 350 GDD; leaf appearance = 1000
GDD. In order to provide a useful translation of different GDD approaches, lookup tables are
presented comparing the method used within this atlas (which we have called the GDDAdjusted

method) and a range of methods used from across Australia. These are presented for four
contrasting regions:

GDD

July–June October–April Adjusted

Month Tbase 10°C 7°C 4°C 2°C 0°C 10°C 7°C 4°C 2°C 0°C 4-7-10°C

Jul 0 70 163 225 287 — — — — — 163

Aug 4 157 343 467 591 — — — — — 343

Sep 50 292 568 752 936 — — — — — 484

Oct 135 471 840 1086 1332 85 178 271 333 395 663

Nov 271 697 1156 1462 1768 221 404 587 709 831 889

Dec 464 983 1535 1903 2271 414 690 966 1150 1334 1121

Jan 702 1313 1958 2388 2818 652 1021 1390 1636 1882 1358

Feb 910 1605 2334 2820 3306 860 1313 1766 2068 2370 1566

Mar 1104 1893 2715 3263 3811 1054 1600 2146 2510 2874 1761

Apr 1222 2100 3012 3620 4228 1172 1808 2444 2868 3292 1878

May 1274 2246 3251 3921 4591 1172 1808 2444 2868 3292 1931

Jun 1278 2330 3425 4155 4885 1172 1808 2444 2868 3292 1935

Table 3: Mean cumulative monthly GDD for example location in Tasmania East
Coast for the current period (1997–2017)

GDD

July–June October–April Adjusted

Month Tbase 10°C 7°C 4°C 2°C 0°C 10°C 7°C 4°C 2°C 0°C 4-7-10°C

Jul 0 70 163 225 287 — — — — — 163

Aug 9 167 353 477 601 — — — — — 353

Sep 63 311 587 771 955 — — — — — 497

Oct 177 518 887 1133 1379 114 207 300 362 424 704

Nov 368 799 1258 1564 1870 305 488 671 793 915 985

Dec 623 1148 1700 2068 2436 560 836 1112 1296 1480 1247

Jan 947 1565 2210 2640 3070 884 1253 1622 1868 2114 1571

Feb 1240 1942 2671 3157 3643 1177 1630 2083 2385 2687 1864

Mar 1484 2278 3100 3648 4196 1421 1967 2513 2877 3241 2107

Apr 1628 2512 3424 4032 4640 1565 2201 2837 3261 3685 2251

May 1695 2672 3677 4347 5017 1565 2201 2837 3261 3685 2318

Jun 1696 2751 3846 4576 5306 1565 2201 2837 3261 3685 2320

Table 4: Mean cumulative monthly GDD for example location in Coonawarra
for the current period (1997–2017)

GDD

July–June October–April Adjusted

Month Tbase 10°C 7°C 4°C 2°C 0°C 10°C 7°C 4°C 2°C 0°C 4-7-10°C

Jul 87 180 273 335 397 — — — — — 273

Aug 186 372 558 682 806 — — — — — 492

Sep 306 582 858 1042 1226 — — — — — 702

Oct 493 862 1231 1477 1723 187 280 373 435 497 982

Nov 761 1220 1679 1985 2291 454 637 820 942 1064 1256

Dec 1105 1657 2209 2577 2945 798 1074 1350 1534 1718 1600

Jan 1513 2158 2803 3233 3663 1206 1575 1944 2190 2436 2008

Feb 1889 2618 3347 3833 4319 1583 2036 2489 2791 3093 2384

Mar 2257 3079 3901 4449 4997 1951 2497 3043 3407 3771 2752

Apr 2520 3432 4344 4952 5560 2213 2849 3485 3909 4333 3015

May 2710 3715 4720 5390 6060 2213 2849 3485 3909 4333 3205

Jun 2823 3918 5013 5743 6473 2213 2849 3485 3909 4333 3318

Table 5: Mean cumulative monthly GDD for example location in Geographe for
the current period (1997–2017)

GDD

July–June October–April Adjusted

Month Tbase 10°C 7°C 4°C 2°C 0°C 10°C 7°C 4°C 2°C 0°C 4-7-10°C

Jul 99 192 285 347 409 — — — — — 285

Aug 218 404 590 714 838 — — — — — 518

Sep 364 640 916 1100 1284 — — — — — 754

Oct 589 958 1327 1573 1819 224 317 410 472 534 1054

Nov 909 1368 1827 2133 2439 544 727 910 1032 1154 1374

Dec 1311 1863 2415 2783 3151 946 1222 1498 1682 1866 1776

Jan 1784 2429 3074 3504 3934 1420 1789 2158 2404 2650 2249

Feb 2220 2949 3678 4164 4650 1855 2308 2761 3063 3365 2685

Mar 2643 3465 4287 4835 5383 2279 2825 3371 3735 4099 3108

Apr 2949 3861 4773 5381 5989 2585 3221 3857 4281 4705 3414

May 3153 4158 5163 5833 6503 2585 3221 3857 4281 4705 3618

Jun 3275 4370 5465 6195 6925 2585 3221 3857 4281 4705 3740

Table 6: Mean cumulative monthly GDD for example location in Swan District
for the current period (1997–2017)
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Heat

Figure 6: Probability distribution of Growing Degree Days

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Annual Maximum Growing Degree Days is the sum of all daily GDD values (calculated as de-
scribed above) over the period from July 1st to June 30th for each growing season year for each
member within the CCAM ensemble. Grid cells selected were those within (or intersecting
with the boundary of) the polygon that defined each wine industry Australian Geographical
Indications (Wine Australia, 2019). Values were calculated for each grid cell.

The coloured curves represent the probability distribution of Annual Maximum GDD val-
ues from all grid cells and all ensemble members during each different 20-year period. Time
periods were: 2001–2020; 2021–2040; 2041–2060; 2061–2080; 2081–2100.

The grey, filled curves represent the distribution of observed Annual Maximum GDD values
within the current period (1997–2017) for contrasting wine industry Australian Geographical
Indications (Wine Australia, 2019).

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Low, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial, temporal scales and across the CFAP2019 ensemble is represented with each
curve. This has the advantage of reflecting the diversity that is found within each wine
region (cooler vs warmer subregions) and across different types of years (e.g., hot, average
or cold). Different ensemble members capture different climate configurations (e.g., El
Niño, neutral, or La Niña phases of ENSO), thus better estimate the range of possible
extremes. Low likelihood years (extreme hot or cold) can be included, indicating the
possible, while simultaneously representing the expected or typical conditions for a par-
ticular region. Curves with multiple peaks indicate either strong, stable spatial differences
(highland vs lowlands conditions), or strong modal character of the regions climate (e.g.,
a region is either has very warm years, or very cold years but rarely is in between). The
different coloured curves indicate how conditions are expected to change into the future.
As the curves are all distinct and the direction of change across the five time-periods is
consistent, this indicates all ensemble members agree on the rate and direction of warming
into the future. The future curves are typically lower and broader as different simulations
follow different trajectories, increasing the variability within the population of values.

The grey curves are the probability distribution for contrasting Australian wine regions,
selected to present the range observed across Australia, and indicate the approximate
analogues a region may become similar to into the future. These grey curves are calcu-
lated using the Australian Gridded Climate Data product from the period 1997–2017.
The coloured curves are calculated using the bias-adjusted CFAP2019 ensemble during
the period 2001–2020. As there are differences between these two archives, the 2001–2020
curves for these selected regions are slightly different to the grey curves. These differences
are expected.

Figure 7: Projected annual cumulative Growing Degree Days

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Annual Cumulative Growing Degree Days is the cumulative sum of all daily GDD values (cal-
culated as described above) over the period from July 1st to June 30th for each growing season
year for each member within the CCAM ensemble. Grid cells selected were those within (or
intersecting with the boundary of) the polygon that defined each wine industry Australian
Geographical Indications (Wine Australia, 2019). Values were calculated for each grid cell.
Each curve represents the annual accumulation of heat for a single grid cell for each ensemble
member. Time periods were: 2001–2020; 2021–2040; 2041–2060; 2061–2080; 2081–2100.

Dashed horizontal lines are indicative thresholds for important phenological stages across Aus-
tralia (selected depending on the varietal, style or regional standards). For cooler regions they
may represent only the harvest period, for warmer regions they may be approximately repre-
sentative of flowering, veraison and harvest periods (for some varietals). The selection of these
thresholds is broadly consistent with the heat accumulation hours represented within Moncur
et al. (1989).

Interpretation:

Growing Degree Days curves reflect how the heat a region is exposed to accumulates
across each growing year. Curves are allocated colours based on the time period within
which they occur, demonstrating the projected interannual variability to be expected. No-
tably, the CFAP2019 ensemble has relatively similar projected futures (a narrow range),
increasing the certainty of projected conditions. The shape of the GDD accumulation
curves indicate how accumulation rates will change, where by 2081–2100, heat has accu-
mulated in the system such that compared to 2001–2020, typical GDD values in: August
occur 2 weeks earlier; October occur 4 weeks earlier; December occur 6 weeks earlier;
and February occurs 8 weeks. Maximum values reached by the end of the growing year
increase accordingly, with values never before experienced projected to become a regular
expectation every few years.

The Growing Degree Days equation used within the atlas uses a novel method, designed
to better represent the physiological requirements of grape vines during the entire growing
year. In the context of climate change it is particularly important to accumulate heat
from July (not October) as the influence of increased heat units at the beginning of the
season are important to the potential timing of key phenological stages (for example, in
2017 many growers had already observed budbreak and flowering was occurring earlier
in the season, often prior to October). Across most regions, the GDD units accumulated
by October during the 2001–2020 period, are reached about 4–5 weeks earlier within the
2081–2100 period. Such substantial changes (and the potential impact on phenology)
would not be represented using the typical October to April configuration of the GDD
equation. In a similar way, using a Tbase of 10°C (0°C) underestimates (overestimates)
useful daily heat units in cooler (warmer) regions, thus the implementation of the staged
Tbase as described in the methods. It is recommended that users refer to the methods
section (on page 55), where the translation of the GDD values presented within the atlas
(i.e. GDDAdjusted) are converted to other GDD configurations (e.g., GDDTbase10,Oct−Apr).

Figure 8: Probability distribution of date when Growing Degree Days reaches
threshold

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Date when cumulative Growing Degree Days reaches threshold was calculated by determining
the date within each year (for each member within the CCAM ensemble) when each cumu-
lative Growing Degree Days threshold (1000, 1500, 2000, 2500) was exceeded. Values were
calculated for each cell. Grid cells selected were those within (or intersecting with the bound-
ary of) the polygon that defined each wine region’s Geographical Indications (Wine Australia,
2019).

The coloured curves represent the probability distribution of Date when cumulative Growing
Degree Days reaches threshold values from all grid cells and all ensemble members during each
different 20-year period, displayed separately for each threshold. Time periods were: 2001–
2020; 2021–2040; 2041–2060; 2061–2080; 2081–2100. Curves with <60 underlying values were
excluded.

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Low, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial, temporal scales and across the CFAP2019 ensemble is represented with each
curve. This has the advantage of reflecting the diversity that is found within each wine
region (cooler vs warmer subregions) and across different types of years (e.g., hot, average
or cold).

(continued)

Different ensemble members capture different climate configurations (e.g., El Niño, neu-
tral, or La Niña phases of ENSO), thus better estimate the range of possible extremes.
Low likelihood years (extreme hot or cold) can be included, indicating the possible, while
simultaneously representing the expected or typical conditions for a particular region.
Curves with multiple peaks indicate either strong, stable spatial differences (highland vs
lowlands conditions), or strong modal character of the regions climate (e.g., a region is
either has very warm years, or very cold years but rarely is in between).

The different coloured curves indicate how conditions are expected to change into the
future. As the curves are all distinct and the direction of change across the five time-
periods is consistent, this indicates all ensemble members agree on the rate and direction
of warming into the future. The future curves are typically lower and broader as different
simulations follow different trajectories, increasing the variability within the population
of values.

For some wine regions, higher Growing Degree Days thresholds are not reached, or are
reached irregularly. In these cases the curves have inconsistent, irregular shapes (due to
a lack of underlying data, please note, curves with <60 underlying values were excluded).
Irregular shapes should not be over-interpreted, they just indicate an emerging trend to
reach these higher GDD thresholds. As these curves transition towards more normal
distributions, there is higher confidence in the information they provide and they become
more useful.
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Moisture

Moisture

Interpretation:

Rainfall projections from the bias adjusted CFAP2019 ensemble are the highest accu-
racy, highest precision rainfall projections currently available for Australia. Rainfall is a
well understood weather and climate variable, controlled by the ocean, atmosphere and
landform dynamics at large, medium and small scales across space and time. Large and
medium scale processes are well resolved within the CFAP2019 ensemble, resulting in rea-
sonable representation of the distribution of rainfall across Australia. This is exemplified
with the representation of wet and dry subregions within some wine regions. However, it
is those processes that occur at small spatial scales which are sometimes poorly resolved
leading to inaccuracies or poor precision. As such, there is greater inaccuracy and preci-
sion within the projections of rainfall than there are for temperature. This means there
is reduced levels of confidence (i.e greater uncertainty) surrounding projections of this
variable.

There is often greater variability across the ensemble than there is spatially across a re-
gion, reflecting the large differences between wet and dry years across most regions. Each
ensemble member describes a possible future, with different timing and sequencing of
broad global drivers (such as the Southern Annular Mode (SAM), the El Niño Southern
Oscillation (ENSO) and the Indian Ocean Dipole (IOD) ). This results in the timing of
wet or dry years being out of phase with each other, resulting in dramatically different
projections of any one year (sometimes seen as disconnected clusters of points). Because
of this, 10-year or 20-year averages (or distributions) are far more useful for characteris-
ing the rainfall typical for a wine region. Annualised values are useful for identifying the
possible extremes, especially the potential timing of their occurrence (for example, is it
more likely to have a wet year now, or by 2100?).

Figure 1: Observed mean Growing Season Rainfall

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

Growing Season Rainfall (GSR) was calculated as the sum of all daily rainfall values within the
period from October to April of each growing season year. Mean Growing Season Rainfall is
the average of all annual GSR values over the current period (1997–2017). Grid cells selected
were those within (or intersecting with the boundary of) the polygon that defined each wine
industry Australian Geographical Indications (Wine Australia, 2019). Values were calculated
for each grid cell.

Interpretation:

Each tile represents the mean Growing Season Rainfall during the period 1997–2017,
(which is the period of recent memory). This map reflects the level of variability across
the region as it is currently experienced, indicating subregions with higher or lower rain-
fall. Tiles are the resolution of the underlying data. Towns and roads are included to
help identify specific sites within the region. Rain shadows are often visible, although the
exact boundaries should be interpreted with caution, especially in small regions where
grid cells may be large compared to the controlling topographic features.

Figure 2: Observed change in mean Growing Season Rainfall

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

Growing Season Rainfall (GSR) was calculated as the sum of all daily rainfall values within
the period from October to April of each growing season year. Mean Growing Season Rainfall
is the average of all annual GSR values over the current period (1997–2017), or the baseline
period (1961–1990). The baseline period mean GSR was then subtracted from the current pe-
riod mean GSR, resulting in the observed change in mean GSR. Grid cells selected were those
within (or intersecting with the boundary of) the polygon that defined each wine industry
Australian Geographical Indications (Wine Australia, 2019). Values were calculated for each
grid cell.

Interpretation:

Each tile represents how mean Growing Season Rainfall during the current period (1997–
2017) has changed when compared to mean Growing Season Rainfall during the historical
period (1961–1990). Change is presented in millimetres. Towns and roads are included to
help identify specific sites within the region. Rain shadows are often visible, although the
exact boundaries should be interpreted with caution, especially in small regions where
grid cells may be large compared to the influential topographic features.

Figure 3: Projected mean Growing Season Rainfall

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Growing Season Rainfall (GSR) was calculated as the sum of all daily rainfall values within
the period from October to April of each growing season year for each member within the
CFAP2019. Grid cells selected were those within (or intersecting with the boundary of) the
polygon that defined each wine industry Australian Geographical Indications (Wine Australia,
2019). Values were calculated for each grid cell. Mean Growing Season Rainfall is the av-
erage of all annual GSR values within each time period (2021–2040; 2041–2060; 2061–2080;
2081–2100). These were calculated for each ensemble member within the CFAP2019. The 6
ensemble member values (for each cell) are averaged generating the ensemble mean for each
cell within the region.

Interpretation:

Each tile represents the mean Growing Season Rainfall during each 20-year period of
2021–2040, 2041–2060, 2061–2080, 2081–2100 (following the RCP8.5 scenario). These
reflect the level of variability across the region, indicating subregions with higher or lower
rainfall and how these are projected to change into the future. Tiles are the resolution of
the underlying data. Towns and roads are included to help identify specific sites within
the region. Rain shadows are often visible, although the exact boundaries should be in-
terpreted with caution, especially in small regions where grid cells may be large compared
to the influential topographic features.

Figure 4: Projected annual Growing Season Rainfall (October to April)

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Blue points: Growing Season Rainfall (GSR) was calculated as the sum of all daily rainfall
values within the period from October to April of each growing season year for each member
within the CFAP2019. Grid cells selected were those within (or intersecting with the boundary
of) the polygon that defined each wine industry Australian Geographical Indications (Wine
Australia, 2019). Values were calculated for each grid cell.

Grey Bars: The grey bars represent the observed mean GSR for the current period (1997–
2017) from contrasting wine industry Australian Geographical Indications (Wine Australia,
2019). Values were averaged across space and time, calculated from the Australian Gridded
Climate Data product (Jones, et al., 2009).

Coloured zones: The coloured zones indicate the ensemble mean time when average global
climate temperature increases by 1°C, 2°C, 3°C or 4°C, following the Representative Concen-
tration Pathway 8.5 scenario (RCP8.5, often referred to as the business as usual scenario).
These estimates were taken from the Intergovernmental Panel on Climate Change Fifth As-
sessment Report (IPCC-AR5), which are based on the World Climate Research Programme
(WCRP) Coupled Model Intercomparison Project - phase 5 (CMIP5) global climate model
archive.

Interpretation:

Key elements:

� Natural variability of Growing Season Rainfall is very high over the entire 140 year
period for most regions, with dramatic differences between wet and dry years. Re-
gional variability in any one year is exhibited by large regions.

� For most regions, Growing Season Rainfall exhibits minimal influence of climate
change, with natural variability dominating the signal out to 2100.

(continued)

� Ensemble members do not always agree in the direction or magnitude of the pro-
jected changes following the RCP8.5 scenario. When they disagree, there is reduced
confidence in projected changes to Growing Season Rainfall. Decreasing rainfall
trends are common across the CFAP2019 ensemble, however, for some regions rain-
fall is not projected to change substantially (i.e., the trends are neutral). Increasing
rainfall trends are rare across all the wine regions, with only a single ensemble
member indicating this direction in those cases. This reduces the certainty, as it
indicates divergent possibilities for the future of those regions.

� Extremely wet years can occur at any time over the 140 period.

Each point represents the annual Growing Season Rainfall for individual grid cells within
the region for each separate CFAP2019 ensemble member. For each year, the spread
of points represents the spatial variability as well as the variability across the ensemble
members. From 1961 to 2100, interannual and decadal variability dominate the projected
future, with no obvious influence of climate change across most regions.

The grey bars are the regional average for contrasting GIs across Australia. They do not
represent the regional variability within each of those GIs, but are intended to provide
approximate climate analogues to aid interpretation.

The coloured zones are intended to be used independently of the Growing Year (July to
June) axis, allowing decisions to be made based on the expected magnitude of global
warming (such as those national governments are committed to within the Paris Agree-
ments), rather than being based on the passage of time. This allows these plots to be
useful regardless of the emissions scenario the world eventually follows.

Figure 5: Projected annual Non-Growing Season Rainfall (May to September)

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Non-Growing Season Rainfall is the sum of all daily rainfall values within the period from
May to September of each calendar year (i.e., the May to September prior to the growing
season year) for each member within the CFAP2019. Grid cells selected were those within
(or intersecting with the boundary of) the polygon that defined each wine industry Australian
Geographical Indications (Wine Australia, 2019). Values were calculated for each grid cell.

Grey Bars: The grey bars represent the observed mean Non-Growing Season Rainfall for
the current period (1997–2017) from contrasting wine industry Australian Geographical Indi-
cations (Wine Australia, 2019). Values were averaged across space and time, calculated from
the Australian Gridded Climate Data product (Jones, et al., 2009).

Coloured zones: The coloured zones indicate the ensemble mean time when average global
climate temperature increases by 1°C, 2°C, 3°C or 4°C, following the Representative Concen-
tration Pathway 8.5 scenario (RCP8.5, often referred to as the business as usual scenario).
These estimates were taken from the Intergovernmental Panel on Climate Change Fifth As-
sessment Report (IPCC-AR5), which are based on the World Climate Research Programme
(WCRP) Coupled Model Intercomparison Project - phase 5 (CMIP5) global climate model
archive.

Interpretation:

Key elements:

� Natural variability of Non-Growing Season Rainfall is very high over the entire 140
year period for most regions, with dramatic differences between wet and dry years.
Regional variability in any one year is exhibited by large regions.

� For Non-Growing Season Rainfall the influence of climate change is observable from
around the 2000s onwards for most regions, although for some the influence appears
to have been since the 1980s and for others there is no obvious climate change signal
at all.

� Although ensemble members do not always agree on the magnitude of the projected
changes, following the RCP8.5 scenario most regions exhibit a drying trend during
the non-growing season into the future. Where this trend is occurring, model agree-
ment in the direction provides improved confidence, however the rate and magnitude
is far less certain.
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(continued)

� Where the drying trend is clear, extremely wet years become far less common into
the future. Where there is no obvious change, wet years are equally likely across
the 140 year period.

Each point represents the annual Non-Growing Season Rainfall for individual grid cells
within the region for each separate CFAP2019 ensemble member. For each year, the
spread of points represents the spatial variability as well as the variability across the
ensemble members. In most cases, ensemble member variability (an ensemble member
either has a wet, average or dry year) is larger than regional variability (an entire region
typically has a wet, average or dry year, rather than a subregion being wet while the rest
is dry).

The grey bars are the regional average for contrasting GIs across Australia. They do not
represent the regional variability within each of those GIs, but are intended to provide
approximate climate analogues to aid interpretation.

The coloured zones are intended to be used independently of the Growing Year (July to
June) axis, allowing decisions to be made based on the expected magnitude of global
warming (such as those national governments are committed to within the Paris Agree-
ments), rather than being based on the passage of time. This allows these plots to be
useful regardless of the emissions scenario the world eventually follows.

Figure 6: Projected monthly rainfall

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Monthly Rainfall was calculated as the sum of all daily rainfall values within each month, for
each year and each ensemble member within the CFAP2019. Grid cells selected were those
within (or intersecting with the boundary of) the polygon that defined each wine industry
Australian Geographical Indications (Wine Australia, 2019). Values were calculated for each
grid cell.

Violin plots represent 20-years of values for each month within each time period (2021–2040;
2041–2060; 2061–2080; 2081–2100). All individual spatial and ensemble member values are
included, no spatial or ensemble averaging is performed.

Interpretation:

Violin plots are a combination of box-and-whisker plots and probability distribution
curves. Like a box-and-whisker plot, the shape is defined by the values within that
population. The violin is created by mirroring the probability distribution of the values,
plotted in the vertical direction, describing the frequency and spread of values in the y-axis
space. Where there is a concentration of values, the violin is broad. Where there are few
values the violin is narrow (possibly only a single line). As the probability distribution is
continuous, where extreme outlier values occur, narrow lines can be drawn between the
main body and the outlier (typical of high rainfall areas that may receive extremely high
rainfall events in some years). Where very low values are common, violins can look odd,
with very wide bases and narrow tops (typical of low rainfall areas, that may typically
receive almost no rainfall in some months, but then rarely receive comparatively high
rainfall events in some years).

Differences between the months, or time periods is expressed as changes to the shape of
each violin. The 2001–2020 violin for each month is shadowed underneath future time
periods, so that changes in future periods can be more easily determined.

Figure 7: Probability distribution of seasonal rainfall

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Seasonal Rainfall is the sum of all daily rainfall values within each calendar season (Winter,
Spring, Summer, Autumn), for each growing season year for each ensemble member within the
CFAP2019. Grid cells selected were those within (or intersecting with the boundary of) the
polygon that defined each wine industry Australian Geographical Indications (Wine Australia,
2019). Values were calculated for each grid cell. All individual spatial and ensemble member
values are included, no spatial or ensemble averaging is performed.

The coloured curves represent the probability distribution of seasonal rainfall values from all
grid cells and all ensemble members during each different 20-year period. Time periods were:
2001–2020; 2021–2040; 2041–2060; 2061–2080; 2081–2100.

The grey, filled curves represent the distribution of observed seasonal rainfall values within the
current period (1997–2017) for contrasting wine industry Australian Geographical Indications
(Wine Australia, 2019).

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Low, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial and temporal scales as well as across the CFAP2019 ensemble is represented with
each curve. This has the advantage of reflecting the diversity that is found within each
wine region (wetter vs drier subregions) and across different types of years (e.g., wet,
average or dry). Different ensemble members capture different climate configurations
(e.g., El Niño, neutral, or La Niña phases of ENSO), thus better estimate the range of
possible extremes. Low likelihood years (extreme wet or dry) can be included, indicating
what is possible, while simultaneously representing the expected or typical conditions
for a particular region. Curves with multiple peaks indicate either strong, stable spatial
differences (e.g., desert adjacent to alpine), or a strong modal character of the regions
climate (e.g., a region either has wet years, or dry years but rarely average years). The
different coloured curves indicate how conditions are expected to change into the future.
The future curves are typically lower and broader as different simulations follow different
trajectories, increasing the variability within the population of values.

When curves for each time period are all distinct and the direction of change across the
five time-periods is consistent, this indicates all ensemble members agree broadly on the
rate and direction of warming into the future. In such cases there is increased certainty
surrounding the projected future.

When the curves from all time periods are overlapping, natural variability dominates the
climate change trend, with the future conditions projected to be much the same as at
present.

When the direction of change is confused between time periods, or the spread of the
curve is significantly broadened (but the average conditions are more or less the same),
ensemble variability is high, there is significant uncertainty regarding the projections of
the future.

The grey curves are the probability distribution for contrasting Australian wine regions,
selected to present the range observed across Australia, and indicate the approximate
analogues a region may become similar to into the future. These grey curves are calcu-
lated using the Australian Gridded Climate Data product from the period 1997–2017.
The coloured curves are calculated using the bias-adjusted CFAP2019 ensemble during
the period 2001–2020. As there are differences between these two archives, the 2001–2020
curves for these selected regions are slightly different to the grey curves. These differences
are expected.

Figure 8: Probability distribution of number of rainy days during harvest

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Harvest date was determined as the date within each year when each cumulative Growing
Degree Days threshold (1000, 1500, 2000, 2500) was exceeded. The harvest period was de-
termined as the 15-day period, starting 7 days before the harvest date and ending 7 days
after the harvest date. Thus, there were 4 potential harvest periods, to account for different
regional, varietal or style preferences of different users of the atlas. The number of rainy days
during harvest was calculated by counting the number of days with rainfall >10mm during
the harvest period. Values were calculated for each cell and for each ensemble member within
CFAP2019. Grid cells selected were those within (or intersecting with the boundary of) the
polygon that defined each wine region’s Geographical Indications (Wine Australia, 2019).

The coloured curves represent the probability distribution of number of rainy days during
harvest values from all grid cells and all ensemble members during each different 20-year pe-
riod. Time periods were: 2001–2020; 2021–2040; 2041–2060; 2061–2080; 2081–2100. These
are displayed separately for each GDD threshold (1000, 1500, 2000, 2500). Higher thresholds
were often not reached in some regions. Only curves that represented >60 individual values
were displayed (otherwise they were excluded, as they would only represent outliers).

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Low, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial and temporal scales as well as across the CFAP2019 ensemble is represented with
each curve. This has the advantage of reflecting the diversity that is found within each
wine region (wetter vs drier subregions) and across different types of years (e.g., wet,
average or dry). Different ensemble members capture different climate configurations
(e.g., El Niño, neutral, or La Niña phases of ENSO), thus better estimate the range of
possible extremes. Low likelihood years (extreme wet or dry) can be included, indicating
what is possible, while simultaneously representing the expected or typical conditions for
a particular region. Curves with multiple peaks indicate either strong, stable spatial dif-
ferences (e.g., desert adjacent to alpine zones), or a strong modal character of the regions
climate (e.g., a region either has wet years, or dry years but rarely average years). The
different coloured curves indicate how conditions are expected to change into the future.
The future curves are typically lower and broader as different simulations follow different
trajectories, increasing the variability within the population of values.

When curves for each time period are all distinct and the direction of change across the
five time-periods is consistent, this indicates all ensemble members agree broadly on the
rate and direction of warming into the future. In such cases there is increased certainty
surrounding the projected future.

When the curves from all time periods are overlapping, natural variability dominates the
climate change trend, with the future conditions projected to be much the same as at
present.

When the direction of change is confused between time periods and the spread of the
curve is significantly broadened (but the average conditions are more or less the same),
ensemble variability is high, there is significant uncertainty regarding the projections of
the future.
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Australia’s Wine Future — A Climate Atlas
METHODS AND INTERPRETATION

Aridity

Aridity

Figure 1: Observed mean annual aridity index

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

Annual Aridity Index was calculated as P/E where: P = the sum of daily rainfall during the
period from July to June each annual cycle; and E = the sum of daily evaporation during
the period from July to June each annual cycle. Aridity Index values below 0.05 and above
2 offer limited meaningful information, so values >0.05 were rounded up to 0.05 and values
>2 were rounded down to 2. Mean Annual Aridity Index is the average of all Annual Aridity
Index values over the current period (1997–2017). Grid cells selected were those within (or
intersecting with the boundary of) the polygon that defined each wine industry Australian
Geographical Indications (Wine Australia, 2019). Values were calculated for each grid cell.

Interpretation:

Each tile represents the mean annual Aridity Index during the period 1997–2017, (which
is the period of recent memory). This map reflects the level of variability across the region
as it is currently experienced, indicating drier/wetter Aridity Index subregions (if they
exist). Tiles are the resolution of the underlying data. Towns and roads are included
to help identify specific sites within the region. Rain shadows or regions more exposed
to evaporation are often visible, although the exact boundaries should be interpreted
with caution, especially in small regions where grid cells may be large compared to the
controlling topographic features.

Figure 2: Observed change in mean annual aridity index

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

Annual Aridity Index was calculated as P/E where: P = the sum of daily rainfall during the
period from July to June each annual cycle; and E = the sum of daily evaporation during
the period from July to June each annual cycle. Mean Annual Aridity Index is the average
of all Annual Aridity Index values over the current period (1997–2017), or the baseline period
(1961–1990). The baseline period mean Annual Aridity Index was then subtracted from the
current period mean Annual Aridity Index, resulting in the observed change in mean Annual
Aridity Index (as an absolute value). This was divided by the baseline period mean Annual
Aridity Index and multiplied by 100 to produce the observed change in mean Annual Aridity
Index as a percentage), which was considered more useful than the logarithmic scale of the
aridity index. Grid cells selected were those within (or intersecting with the boundary of) the
polygon that defined each wine industry Australian Geographical Indications (Wine Australia,
2019). Values were calculated for each grid cell.

Interpretation:

Each tile represents how mean annual Aridity Index during the current period (1997–
2017) has changed when compared to mean annual Aridity Index during the historical
period (1961–1990). Change is presented as a percentage, to allow regions with high
variability to understand the rate of change within their subregion. Towns and roads are
included to help identify specific sites within the region. Rain shadows or regions more
exposed to evaporation are often visible, although the exact boundaries should be inter-
preted with caution, especially in small regions where grid cells may be large compared
to the controlling topographic features.

Figure 3: Projected mean annual aridity index

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Annual Aridity Index was calculated as P/E where: P = the sum of daily rainfall during the
period from July to June each annual cycle; and E = the sum of daily evaporation during
the period from July to June each annual cycle. Grid cells selected were those within (or
intersecting with the boundary of) the polygon that defined each wine industry Australian
Geographical Indications (Wine Australia, 2019). Values were calculated for each grid cell.
Mean Annual Aridity Index is the average of all Annual Aridity Index values within each
time period (2021–2040; 2041–2060; 2061–2080; 2081–2100). These were calculated for each

ensemble member within the CFAP2019. The 6 ensemble member values (for each cell) are
averaged to produce the ensemble mean for each cell within the region.

Interpretation:

Each tile represents the mean annual Aridity Index during each 20-year period of 2021–
2040, 2041–2060, 2061–2080, 2081–2100 (following the RCP8.5 scenario). These reflect
the level of variability across the region, indicating drier/wetter subregions (if they exist)
and how these are projected to change into the future. Tiles are the resolution of the
underlying data. Towns and roads are included to help identify specific sites within the
region. Rain shadows or regions more exposed to evaporation are often visible, although
the exact boundaries should be interpreted with caution, especially in small regions where
grid cells may be large compared to the controlling topographic features.

All Australian wine regions exhibit annual Aridity Index values that are decreasing into
the future, indicating a drier, moisture constrained future.

Figure 4: Projected annual aridity index

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Blue points: Annual Aridity Index was calculated as P/E where: P = the sum of daily
rainfall during the period from July to June each annual cycle; and E = the sum of daily
evaporation during the period from July to June each annual cycle. Grid cells selected were
those within (or intersecting with the boundary of) the polygon that defined each wine indus-
try Australian Geographical Indications (Wine Australia, 2019). Values were calculated for
each grid cell.

Grey Bars: The grey bars represent the observed mean Annual Aridity Index for the current
period (1997–2017) from contrasting wine industry Australian Geographical Indications (Wine
Australia, 2019). Values were averaged across space and time, calculated from the Australian
Gridded Climate Data product (Jones, et al., 2009).

Coloured zones: The coloured zones indicate the ensemble mean time when average global
climate temperature increases by 1°C, 2°C, 3°C or 4°C, following the Representative Concen-
tration Pathway 8.5 scenario (RCP8.5, often referred to as the business as usual scenario).
These estimates were taken from the Intergovernmental Panel on Climate Change Fifth As-
sessment Report (IPCC-AR5), which are based on the World Climate Research Programme
(WCRP) Coupled Model Intercomparison Project - phase 5 (CMIP5) global climate model
archive.

Interpretation:

Key elements:

� Ensemble members broadly agree on the magnitude and direction of the projected
changes. Following the RCP8.5 scenario most regions exhibit a drying trend.

� Extremely wet years become far less common in the future.

� For annual Aridity Index, the influence of climate change is obvious from around
2020 onwards for most regions, although for some regions the influence appears to
have been since about the 1980s.

� Values are limited to between 0.05 and 2 (outside of this range values become mean-
ingless). As such, in some cases, values cluster at these boundaries. Divergence away
from these clusters (say from 2 to 1.5) indicates a significant, strong drying trend.

� Data is presented on a log scale, as the differences across regions (e.g., the difference
between the Riverland and the Barossa Valley) are difficult to see on a standard
scale.

� Due to the log scale, decreasing trends are amplified (so they look steeper than they
are), however, this is a good representation of how these rapid changes in moisture
availability will be experienced on the ground (a small change in the Aridity Index
has a big impact).

(continued)

Each point represents the annual Aridity Index for each grid cell within the region for each
separate CFAP2019 ensemble member. For each year, the spread of points represents the
spatial variability as well as the variability across the ensemble members. In most cases,
ensemble member variability (an ensemble member either has a wet, average or dry year)
is larger than regional variability (an entire region typically has a wet, average or dry
year, rather than a subregion being wet while the rest is dry).

The grey bars are the regional average for contrasting GIs across Australia. They do not
represent the regional variability within each of those GIs, but are intended to provide
approximate climate analogues to aid interpretation.

The coloured zones are intended to be used independently of the Growing Year (July to
June) axis, allowing decisions to be made based on the expected magnitude of global
warming (such as those national governments are committed to within the Paris Agree-
ments), rather than being based on the passage of time. This allows these plots to be
useful regardless of the emissions scenario the world eventually follows.

Figure 5: Projected monthly aridity index

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Monthly aridity index was calculated as P/E where: P = the sum of rainfall within each
month (per year); and E = the sum of evaporation within each month. Values were calculated
for each month, within each year, for each ensemble member within the CFAP2019. Grid cells
selected were those within (or intersecting with the boundary of) the polygon that defined
each wine industry Australian Geographical Indications (Wine Australia, 2019). Values were
calculated for each grid cell.

Violin plots represent 20-years of values for each month within each time period (2021–2040;
2041–2060; 2061–2080; 2081–2100). All individual spatial and ensemble member values are
included, no spatial or ensemble averaging is performed.

Interpretation:

Violin plots are a combination of box-and-whisker plots and probability distribution
curves. Like a box-and-whisker plot, the shape is defined by the values within that
population. The violin is created by mirroring the probability distribution of the val-
ues, plotted in the vertical direction, describing the frequency and spread of values in
the y-axis space. Where there is a concentration of values, the violin is broad. Where
there are few values the violin is narrow (possibly only a single line). As the probability
distribution is continuous, where extreme outlier values occur, narrow lines can be drawn
between the main body and the outlier (typical of high rainfall areas/months that may
be particularly dry in some years).

Differences between the months, or time periods is expressed as changes to the shape of
each violin. The 2001–2020 violin for each month is shadowed underneath future time
periods, so that changes in future periods can be more easily determined.

Figure 6: Probability distribution seasonal aridity index

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Seasonal Aridity Index is calculated as P/E where: P = the sum of rainfall within each cal-
endar season (Winter, Spring, Summer, Autumn); and E = the sum of evaporation within
each calendar season (Winter, Spring, Summer, Autumn). This is calculated for each growing
season year and for each ensemble member within the CFAP2019. Grid cells selected were
those within (or intersecting with the boundary of) the polygon that defined each wine indus-
try Australian Geographical Indications (Wine Australia, 2019). Values were calculated for
each grid cell. All individual spatial and ensemble member values are included, no spatial or
ensemble averaging is performed.

The coloured curves represent the probability distribution of Seasonal Aridity Index values
from all grid cells, all ensemble members and all years during each 20-year period. Time
periods are: 2001–2020; 2021–2040; 2041–2060; 2061–2080; 2081–2100.
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The grey, filled curves represent the distribution of observed Seasonal Aridity Index values
within the current period (1997–2017) for contrasting wine industry Australian Geographical
Indications (Wine Australia, 2019).

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Short, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial and temporal scales as well as across the CFAP2019 ensemble is represented with
each curve. This has the advantage of reflecting the diversity that is found within each
wine region (wetter vs drier subregions) and across different types of years (e.g., wet,
average or dry). Different ensemble members capture different climate configurations
(e.g., El Niño, neutral, or La Niña phases of ENSO), thus better estimate the range of
possible extremes. Low likelihood years (extreme wet or dry) can be included, indicating
what is possible, while simultaneously representing the expected or typical conditions
for a particular region. Curves with multiple peaks indicate either strong, stable spatial
differences (e.g., desert adjacent to alpine), or a strong modal character of the regions
climate (e.g., a region either has wet years, or dry years but rarely average years). The
different curves indicate how conditions are expected to change into the future. The
future curves are typically shorter and broader as different simulations follow different
trajectories, increasing the variability within the population of values.

When curves for each time period are all distinct and the direction of change across the
five time-periods is consistent, this indicates all ensemble members agree broadly on the
rate and direction of warming into the future. In such cases there is increased certainty
surrounding the projected future.

When the curves from all time periods are overlapping, natural variability dominates the
climate change trend, with the future conditions projected to be much the same as at
present.

When the direction of change is confused between time periods, or the spread of the
curve is significantly broadened (but the average conditions are more or less the same),
ensemble variability is high, there is significant uncertainty regarding the projections of
the future.

The grey curves are the probability distribution for contrasting Australian wine regions,
selected to present the range observed across Australia, and indicate the approximate
analogues a region may become similar to into the future. These grey curves are calcu-
lated using the Australian Gridded Climate Data product from the period 1997–2017.
The coloured curves are calculated using the bias-adjusted CFAP2019 ensemble during
the period 2001–2020. As there are differences between these two archives, the 2001–2020
curves for these selected regions are slightly different to the grey curves. These differences
are expected.

Figure 7: Probability distribution of mean aridity index from season start until
harvest

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Harvest date was determined as the date within each year when each cumulative Growing
Degree Days threshold (1000, 1500, 2000, 2500) was exceeded. Thus, there were 4 potential
harvest dates, to account for different regional, varietal or style preferences of different users of
the atlas. The aridity index from season start until harvest was calculated as P/E, where: P
= the sum of rainfall from July 1st to harvest date; and E = the sum of evaporation from July
1st to harvest date. Values were calculated for each cell and for each ensemble member within
CFAP2019. Grid cells selected were those within (or intersecting with the boundary of) the
polygon that defined each wine region’s Geographical Indications (Wine Australia, 2019).

The coloured curves represent the probability distribution of aridity index from season start
until harvest values for all grid cells and all ensemble members for all years during each different
20-year period, displayed separately for each GDD threshold. Time periods were: 2001–2020;
2021–2040; 2041–2060; 2061–2080; 2081–2100.

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Short, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial and temporal scales as well as across the CFAP2019 ensemble is represented with
each curve. This has the advantage of reflecting the diversity that is found within each
wine region (wetter vs drier subregions) and across different types of years (e.g., wet,
average or dry). Different ensemble members capture different climate configurations
(e.g., El Niño, neutral, or La Niña phases of ENSO), thus better estimate the range of
possible extremes. Low likelihood years (extreme wet or dry) can be included, indicating
what is possible, while simultaneously representing the expected or typical conditions
for a particular region. Curves with multiple peaks indicate either strong, stable spatial
differences (e.g., desert adjacent to alpine zones), or a strong modal character of the re-
gions climate (e.g., a region either has wet years, or dry years but rarely average years).
The different curves indicate how conditions are expected to change into the future. The
future curves are typically shorter and broader as different simulations follow different
trajectories, increasing the variability within the population of values.

When curves for each time period are all distinct and the direction of change across the
five time-periods is consistent, this indicates all ensemble members agree broadly on the
rate and direction of warming into the future. In such cases there is increased certainty
surrounding the projected future.

When the curves from all time periods are overlapping, natural variability dominates the
climate change trend, with the future conditions projected to be much the same as at
present.

When the direction of change is confused between time periods and the spread of the
curve is significantly broadened (but the average conditions are more or less the same),
ensemble variability is high, there is significant uncertainty regarding the projections of
the future.
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Extreme Heat

Extreme Heat

Figure 1: Observed mean excess heat factor

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

Excess Heat Factor (EHF) is an index that describes the severity of short term, acute heat
impacts on humans during heat waves. It accounts for how hot a period of three days or more
is in relation to an annual temperature threshold at a particular location, as well as how hot
the period is with respect to the recent past (the previous 30 days). This reflects the fact
that people acclimatise to a certain extent to their local climate but may not be prepared
for a sudden rise in temperature above that of the recent past. The calculation is described
in Nairn and Fawcett (2015). In order to apply this assessment into the future, the baseline
period used to calculate the typical annual temperatures needed to be applied on a rolling
basis, to take into account acclimatisation. The baseline period was always calculated as the
previous 30 years (rounded to the nearest 5 years, so for example: the baseline period for the
year 2019 was 1985–2014; the baseline period for the year 2020 was 1990–2019). Grid cells
selected were those within (or intersecting with the boundary of) the polygon that defined
each wine industry Australian Geographical Indications (Wine Australia, 2019). Values were
calculated for each grid cell. Heatwave days were identified as those days when EHF is positive
for 3 consecutive days or more. Mean EHF is the average of all observed EHF values during
heatwave days within the current period (1997–2017).

Interpretation:

Each tile represents the mean Excess Heat Factor (EHF) during the period 1997–2017,
(which is the period of recent memory). Higher (lower) EHF values indicate more (less)
intense heatwaves. For more information refer to Nairn and Fawcett (2015). This map re-
flects the level of variability across the region as it is currently experienced. Lower values
tend to be in regions exposed to large water bodies (typically oceans) that can provide
relief, particularly overnight. Tiles are the resolution of the underlying data. Towns and
roads are included to help identify specific sites within the region.

Figure 2: Observed change in excess heat factor

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

Excess Heat Factor (EHF) is an index that describes the severity of short term, acute heat
impacts on humans during heat waves. It accounts for how hot a period of three days or more
is in relation to an annual temperature threshold at a particular location, as well as how hot
the period is with respect to the recent past (the previous 30 days). This reflects the fact
that people acclimatise to a certain extent to their local climate but may not be prepared
for a sudden rise in temperature above that of the recent past. The calculation is described
in Nairn and Fawcett (2015). In order to apply this assessment into the future, the baseline
period used to calculate the typical annual temperatures needed to be applied on a rolling
basis, to take into account acclimatisation. The baseline period was always calculated as the
previous 30 years (rounded to the nearest 5 years, so for example: the baseline period for the
year 2019 was 1985–2014; the baseline period for the year 2020 was 1990–2019). Grid cells
selected were those within (or intersecting with the boundary of) the polygon that defined
each wine industry Australian Geographical Indications (Wine Australia, 2019). Values were
calculated for each grid cell. Heatwave days were identified as those days when EHF is positive
for 3 consecutive days or more. Mean EHF is the average of all observed EHF values during
heatwave days within the current period (1997–2017), or the baseline period (1961–1990). The
baseline period mean EHF was then subtracted from the current period mean EHF, resulting
in the observed change in mean EHF.

Interpretation:

Each tile represents how mean EHF during the current period (1997–2017) has changed
when compared to mean EHF during the historical period (1961–1990). Climate change
is a large scale feature, so the level of change observed is relatively similar when viewed
at local scales. Higher (lower) EHF values indicate more (less) intense heatwaves. For
more information refer to Nairn and Fawcett (2015).

(continued)

This map reflects the level of variability across the region as it is currently experienced.
Lower values tend to be in regions exposed to features (typically oceans or higher ele-
vations) that can provide relief, particularly overnight. Tiles are the resolution of the
underlying data. Towns and roads are included to help identify specific sites within the
region.

Figure 3: Projected mean excess heat factor

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Excess Heat Factor (EHF) is an index that describes the severity of short term, acute heat
impacts on humans during heat waves. It accounts for how hot a period of three days or more
is in relation to an annual temperature threshold at a particular location, as well as how hot
the period is with respect to the recent past (the previous 30 days). This reflects the fact
that people acclimatise to a certain extent to their local climate but may not be prepared
for a sudden rise in temperature above that of the recent past. The calculation is described
in Nairn and Fawcett (2015). In order to apply this assessment into the future, the baseline
period used to calculate the typical annual temperatures needed to be applied on a rolling
basis, to take into account acclimatisation. The baseline period was always calculated as the
previous 30 years (rounded to the nearest 5 years, so for example: the baseline period for the
year 2019 was 1985–2014; the baseline period for the year 2020 was 1990–2019). Grid cells
selected were those within (or intersecting with the boundary of) the polygon that defined
each wine industry Australian Geographical Indications (Wine Australia, 2019). Values were
calculated for each grid cell.

Heatwave days were identified as those days when EHF is positive for 3 consecutive days or
more.

Mean EHF is the average of all EHF values during heatwave days within each time period
(2001–2020, 2021–2040; 2041–2060; 2061–2080; 2081–2100). These were calculated for each
ensemble member within the CFAP2019. The 6 ensemble member values (for each cell) are
averaged, generating the ensemble mean for each cell within the region.

Interpretation:

Each tile represents the mean EHF during each 20-year period of 2021–2040, 2041–2060,
2061–2080, 2081–2100 (following the RCP8.5 scenario). These reflect the level of variabil-
ity across the region, and the rate of change projected into the future. In many regions,
heatwave intensity is relatively stable, as EHF assumes communities will acclimatise to
more extreme conditions and this index does not account for hard physiological limits.
Higher (lower) EHF values indicate more (less) intense heatwaves. Tiles are the resolution
of the underlying data.

Figure 4: Projected mean number of extreme heat days

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

The annual number of days where daily maximum temperature exceeded either 30°C, 35°C,
40°C or 45 °C was calculated for each cell and ensemble member within CFAP2019. Grid cells
selected were those within (or intersecting with the boundary of) the polygon that defined
each wine industry Australian Geographical Indications (Wine Australia, 2019). Values were
calculated for each grid cell. These values were then averaged into a regional ensemble mean
for each year (i.e., a summary single value for each year from all inputs).

Interpretation:

The mean number of extreme heat days (based on various thresholds) is projected to in-
crease into the future. In many regions, extreme temperatures that are rare will become
common. Extreme temperatures that have never before been experienced will emerge as
new challenges to manage. Natural variability is high, with high frequency extreme heat
day years projected to occur regularly, interspersed by years where hot days are far less
frequent. There is a strong, general trend towards greater frequencies of high temperature
days into the future.

Figure 5: Projected number of days with severe risk to humans working outside

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Humans have physical limitations within which they can safely operate without adaptive
technology or behaviours, with humidity contributing to heat stress. When temperatures are
>30°C and humidity is >60%, conditions are classified as being a Severe risk of heat stress for
humans. Days when both these conditions were met were classified as high human heat stress
days and the annual count calculated. Grid cells selected were those within (or intersecting
with the boundary of) the polygon that defined each wine industry Australian Geographical
Indications (Wine Australia, 2019). Values were calculated for each grid cell. All individ-
ual spatial and ensemble member values are included, no spatial or ensemble averaging is
performed.

Interpretation:

The number of days identified as exhibiting conditions that expose humans working out-
side to severe risk of heat stress (>30°C and >60% humidity) is projected to increase in
many regions. Those regions at greatest risk are those where moisture availability remains
high enough to support high humidity days.

In most regions, increases are projected to increase exponentially, diverging from histori-
cal levels from around 2020 onwards. For some regions, projections indicate 40–60 days
at risk (i.e., most of summer) by the end of the century (following RCP8.5).

Figure 6: Projected range of hot summer days

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

The annual 90th, 95th and 99th percentile values were calculated to characterise Hot summer
days within each time period. Values were calculated for each year for each ensemble member
within the CFAP2019. Grid cells selected were those within (or intersecting with the boundary
of) the polygon that defined each wine industry Australian Geographical Indications (Wine
Australia, 2019). Values were calculated for each grid cell.

Violin plots represent 20-years of values within each time period (2001–2020, 2021–2040; 2041–
2060; 2061–2080; 2081–2100). All individual spatial and ensemble member values are included,
no spatial or ensemble averaging is performed.

Interpretation:

Violin plots are a combination of box-and-whisker plots and probability distribution
curves. Like a box-and-whisker plot, the shape is defined by the values within that
population. The violin is created by mirroring the probability distribution of the val-
ues, plotted in the vertical direction, describing the frequency and spread of values in
the y-axis space. Where there is a concentration of values, the violin is broad. Where
there are few values the violin is narrow (possibly only a single line). As the probability
distribution is continuous, where extreme outlier values occur, narrow lines can be drawn
between the main body and the outlier.

Percentile values can be used to describe how the distribution of values changes. The
90th percentile represents the threshold above which are the ~35 hottest days of the year.
The 95th percentile represents ~17 hottest days of the year. The 99th percentile repre-
sents ~4 hottest days of the year. By assessing these percentiles within each 20-year
period, we can get an indication of how the hot summer days are changing. In most
regions, by 2081–2100, the 90th percentile is projected to be hotter than the 2001–2020
95th percentile.

Differences between percentiles or time periods is expressed as changes to the shape of
each violin.
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Extreme Heat

Figure 7: Probability distribution of daily minimum and maximum temperature
during a heatwave

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Excess Heat Factor (EHF) is an index that describes the severity of short term, acute heat
impacts on humans during heat waves. The calculation is described in Nairn and Fawcett
(2015). Heatwave days were identified as those days when EHF is positive for 3 consecutive
days or more.

Date of Heatwave Days was determined as the date within each year a heatwave occurred.
For multi-day events, all days were included and daily minimum and maximum temperature
values of those days were extracted. Values were extracted for each cell and for each ensem-
ble member within CFAP2019. Grid cells selected were those within (or intersecting with
the boundary of) the polygon that defined each wine region’s Geographical Indications (Wine
Australia, 2019).

The coloured curves represent the probability distribution of daily minimum temperature and
daily maximum temperature during a heatwave. Values are for all grid cells, all ensemble
members, for all years during each 20-year period. Time periods were: 2001–2020; 2021–2040;
2041–2060; 2061–2080; 2081–2100. All individual spatial and ensemble member values are
included, no spatial or ensemble averaging is performed.

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Short, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial and temporal scales as well as across the CFAP2019 ensemble is represented with
each curve. This has the advantage of reflecting the diversity that is found within each
wine region (wetter vs drier subregions) and across different types of years (e.g., wet,
average or dry). Different ensemble members capture different climate configurations
(e.g., El Niño, neutral, or La Niña phases of ENSO), thus better estimate the range of
possible extremes. Low likelihood years (extreme wet or dry) can be included, indicating
what is possible, while simultaneously representing the expected or typical conditions
for a particular region. Curves with multiple peaks indicate either strong, stable spatial
differences (e.g., desert adjacent to alpine), or a strong modal character of the regions
climate (e.g., a region either has wet years, or dry years but rarely average years). The
different curves indicate how conditions are expected to change into the future. The
future curves are typically shorter and broader as different simulations follow different
trajectories, increasing the variability within the population of values.

When curves for each time period are all distinct and the direction of change across the
five time-periods is consistent, this indicates all ensemble members agree broadly on the
rate and direction of warming into the future. In such cases there is increased certainty
surrounding the projected future.

When the curves from all time periods are overlapping, natural variability dominates the
climate change trend, with the future conditions projected to be much the same as at
present.

When the direction of change is confused between time periods, or the spread of the
curve is significantly broadened (but the average conditions are more or less the same),
ensemble variability is high, there is significant uncertainty regarding the projections of
the future.

Figure 8: Probability distribution of date of heatwave days

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Excess Heat Factor (EHF) is an index that describes the severity of short term, acute heat
impacts on humans during heat waves. A definition of how it is calculated is described in Nairn
and Fawcett (2015). Heatwave days were identified as those days when EHF was positive.

Date of Heatwave Days was determined as date within each year a heatwave occurred. For
multi-day events, all values were included. Values were calculated for each cell and for each
ensemble member within CFAP2019. Grid cells selected were those within (or intersecting
with the boundary of) the polygon that defined each wine region’s Geographical Indications
(Wine Australia, 2019).

The coloured curves represent the probability distribution of Date of Heatwave Days values for
all grid cells and all ensemble members for all years during each 20-year period. Time periods
were: 2001–2020; 2021–2040; 2041–2060; 2061–2080; 2081–2100. All individual spatial and
ensemble member values are included, no spatial or ensemble averaging is performed.

Interpretation:

Probability distributions reflect the spread and potential likelihood of values within a
particular population of values. High, narrow peaks indicate low variability with a high
frequency of particular values occurring within the population. Short, broad peaks indi-
cate high variability, with few values occurring frequently. The probability distributions
displayed in the atlas incorporate all spatial grid cell values, across each 20-year time
period, from six ensemble members (i.e., independent simulations). Variability across
spatial and temporal scales as well as across the CFAP2019 ensemble is represented with
each curve. This has the advantage of reflecting the diversity that is found within each
wine region (wetter vs drier subregions) and across different types of years (e.g., wet,
average or dry). Different ensemble members capture different climate configurations
(e.g., El Niño, neutral, or La Niña phases of ENSO), thus better estimate the range of
possible extremes. Low likelihood years (extreme wet or dry) can be included, indicating
what is possible, while simultaneously representing the expected or typical conditions
for a particular region. Curves with multiple peaks indicate either strong, stable spatial
differences (e.g., desert adjacent to alpine), or a strong modal character of the regions
climate (e.g., a region either has wet years, or dry years but rarely average years). The
different curves indicate how conditions are expected to change into the future. The
future curves are typically shorter and broader as different simulations follow different
trajectories, increasing the variability within the population of values.

When curves for each time period are all distinct and the direction of change across the
five time-periods is consistent, this indicates all ensemble members agree broadly on the
rate and direction of warming into the future. In such cases there is increased certainty
surrounding the projected future.

When the curves from all time periods are overlapping, natural variability dominates the
climate change trend, with the future conditions projected to be much the same as at
present.

When the direction of change is confused between time periods, or the spread of the
curve is significantly broadened (but the average conditions are more or less the same),
ensemble variability is high, there is significant uncertainty regarding the projections of
the future.

Heatwaves are a specifically characterised event. The date of heatwave days for most
regions does not change significantly. Heatwaves are calculated relative to a 30-year base-
line period. However, within a climate change context, the 30-year baseline needs follow
behind the target year (to account for acclimatisation of organisms within the region as
the climate warms). This rolling 30-year baseline period warms with climate change.
This ensures that the hottest days threshold typically occurs at the peak of summer (with
a normally distributed spread surrounding this mean). The absolute temperatures of
heatwaves are much hotter and in many regions the EHF values increase, indicating an
increase in heatwave intensity, however, the chance of a heatwave in any month of the
year is projected to remain relatively constant into the future.
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Extreme Cold

Extreme Cold

Figure 1: Observed mean frost risk days

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

A frost risk day was defined as any day when daily minimum temperature was <2°C.

Annual frost risk days is the number of individual frost risk day events that occur during the
period from October to April each annual cycle.

Mean frost risk days is the average of all annual frost risk days within the current period
(1997–2017).

Grid cells selected were those within (or intersecting with the boundary of) the polygon that
defined each wine industry Australian Geographical Indications (Wine Australia, 2019). Values
were calculated for each grid cell.

Interpretation:

Each tile represents the mean frost risk days during the period 1997–2017, (which is the
period of recent memory). Higher (lower) frost risk values indicate more (less) days where
minimum temperatures were <2°C. For many regions, frost risk is very low (often less
than 1 day per year). This map reflects the level of variability across the region as it is
currently experienced. Tiles are the resolution of the underlying data. Higher values typ-
ically correspond to higher elevation regions. Tiles have an average elevation of the area
they represent, so they best represent regions that have similar elevations (±200m) across
5–10km2 scales. Typically, the highest peaks occur at smaller scales (~1km2) and thus
are poorly represented. This can influence the representation of some climatic features
and should be considered when interpreting these figures. Towns and roads are included
to help identify specific sites within the region.

Figure 2: Observed change in mean frost risk days

Underlying data source: Australian Gridded Climate Data Product (Jones et al., 2009).

A frost risk day was defined as any day when daily minimum temperature was <2°C.

Annual frost risk days is the number of individual frost risk day events that occur during the
period from October to April each annual cycle.

Mean frost risk days is the average of all annual frost risk days within the current period
(1997–2017), or the baseline period (1961–1990).

The baseline period mean frost risk days was then subtracted from the current period mean
frost risk days, resulting in the observed change in mean frost risk days.

Grid cells selected were those within (or intersecting with the boundary of) the polygon that
defined each wine industry Australian Geographical Indications (Wine Australia, 2019). Values
were calculated for each grid cell.

Interpretation:

Each tile represents how mean frost risk days during the current period (1997–2017) has
changed when compared to mean frost risk days during the historical period (1961–1990).
Higher (lower) frost risk values indicate more (less) days where minimum temperatures
were <2°C. This map reflects the level of variability across the region as it is currently
experienced and for many regions frost risk is very low, often less than 1 day per year (so
these figures have few features). Tiles are the resolution of the underlying data. Higher
values typically correspond to higher elevation regions. Tiles have an average elevation
of the area they represent, so they best represent regions that have similar elevations
(±200m) across 5–10km2 scales. Typically, the highest peaks occur at smaller scales
(~1km2) and thus are poorly represented. This can influence the representation of some
climatic features and should be considered when interpreting these figures. Towns and
roads are included to help identify specific sites within the region.

Figure 3: Projected mean frost risk days

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

A frost risk day was defined as any day when daily minimum temperature was <2°C.

Annual frost risk days is the number of individual frost risk day events that occur during the
period from October to April each annual cycle.

Mean frost risk days is the average of all annual frost risk days within each time period (2001–
2020, 2021–2040; 2041–2060; 2061–2080; 2081–2100). These were calculated for each ensemble
member within the CFAP2019. The 6 ensemble member values (for each cell) are averaged,
generating the ensemble mean for each cell within the region.

Grid cells selected were those within (or intersecting with the boundary of) the polygon that
defined each wine industry Australian Geographical Indications (Wine Australia, 2019). Values
were calculated for each grid cell.

Interpretation:

Each tile represents the mean frost risk days during each 20-year period of 2021–2040,
2041–2060, 2061–2080, 2081–2100 (following the RCP8.5 scenario). Higher (lower) frost
risk values indicate more (less) days where minimum temperatures were <2°C. This map
reflects the level of variability across the region as it is currently experienced and for
many regions frost risk is very low, often less than 1 day per year (so these figures have
few features). Tiles are the resolution of the underlying data. Higher values typically
correspond to higher elevation regions. Tiles have an average elevation of the area they
represent, so they best represent regions that have similar elevations (±200m) across 5–
10km2 scales. Typically, the highest peaks occur at smaller scales (~1km2) and thus are
poorly represented. This can influence the representation of some climatic features and
should be considered when interpreting these figures. Towns and roads are included to
help identify specific sites within the region.

Figure 4: Projected monthly minimum temperature

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Monthly minimum temperatures were extracted directly from the CFAP2019.

Violin plots represent 20-years of values for each month within each time period (2021–2040;
2041–2060; 2061–2080; 2081–2100). All individual spatial and ensemble member values are
included, no spatial or ensemble averaging is performed. Grid cells selected were those within
(or intersecting with the boundary of) the polygon that defined each wine industry Australian
Geographical Indications (Wine Australia, 2019).

Interpretation:

Violin plots are a combination of box-and-whisker plots and probability distribution
curves. Like a box-and-whisker plot, the shape is defined by the values within that
population. The violin is created by mirroring the probability distribution of the val-
ues, plotted in the vertical direction, describing the frequency and spread of values in
the y-axis space. Where there is a concentration of values, the violin is broad. Where
there are few values the violin is narrow (possibly only a single line). As the probability
distribution is continuous, where extreme outlier values occur, narrow lines can be drawn
between the main body and the outlier (typical of high rainfall areas/months that may
be particularly dry in some years).

Differences between the months, or time periods is expressed as changes to the shape of
each violin. The 2001–2020 violin for each month is shadowed underneath future time
periods, so that changes in future periods can be more easily determined.

In all wine regions across Australia, minimum daily temperatures are projected to increase
rapidly from 2020 onwards.

Figure 5: Projected monthly frost risk days

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Frost risk days were defined as days when daily minimum temperature was <2°C. The monthly
count of frost risk days was calculated for each month, within each year for each ensemble
member within CFAP2019. Grid cells selected were those within (or intersecting with the
boundary of) the polygon that defined each wine industry Australian Geographical Indications
(Wine Australia, 2019). Values were calculated for each grid cell and then averaged into a
regional ensemble mean for each 20-year time period (i.e., a single summary value for each
time period from all inputs across the region). Time periods were: 2001–2020; 2021–2040;
2041–2060; 2061–2080; 2081–2100.

Interpretation:

Average monthly frost risk days for each 20-year period of 2021–2040, 2041–2060, 2061–
2080, 2081–2100 (following the RCP8.5 scenario). Differences between the months, or
time periods is expressed as changes to the height of each column. The 2001–2020 col-
umn for each month is shadowed underneath future time periods, so that changes in
future periods can be more easily determined.

Figure 6: Projected accumulated frost intensity

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

Frost risk days were defined as days when daily minimum temperature was <2°C. The daily
frost intensity was calculated as the absolute value of temperature less than <2°C (e.g., a daily
minimum temperature of 0.5°C has a daily frost intensity of 1.5°C). The annual accumulated
frost intensity was calculated as the sum of daily frost intensity over the period from July
1st to June 30th each annual cycle. This was calculated for each ensemble member within
CFAP2019. Grid cells selected were those within (or intersecting with the boundary of) the
polygon that defined each wine industry Australian Geographical Indications (Wine Australia,
2019). Values were calculated for each grid cell. All individual spatial and ensemble member
values are included, no spatial or ensemble averaging is performed.

Interpretation:

For all Australian wine regions, accumulated frost intensity is projected to decrease into
the future. As temperatures rise, days that are <2°C are projected to warm, decreasing
the chill or frost intensity of these days. In many regions, these values are dominated
by high elevation regions, rather than the true growing areas. However, they provide
a strong indication of the direction and rate of change projected into the future. The
decreasing trend appears to have been occurring since the 1960s (although it is possible
it started earlier).

Figure 7: Projected mean number of extreme cold days

Underlying data source: Climate Futures Australasian Projections 2019 (CFAP2019).

The annual number of days where daily minimum temperature fell below either -2°C, 0°C, or
2 °C was calculated for each cell and ensemble member within CFAP2019. Grid cells selected
were those within (or intersecting with the boundary of) the polygon that defined each wine
industry Australian Geographical Indications (Wine Australia, 2019). Values were calculated
for each grid cell. These values were then averaged into a regional ensemble mean for each
year (i.e., a single summary value for each year from all inputs across the region).

Interpretation:

The number of days colder than selected thresholds (<2, <0, <-2) is projected to dramat-
ically decrease into the future. The decreasing trend appears to have been occurring since
the 1960s (although it is possible it started earlier). Interannual variability is high in most
regions, but climate change is clearly the dominant influence over the long timescales.
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